【題目】下列各圖是正方體或正四面體,P,Q,R,S分別是所在棱的中點(diǎn),這四個(gè)點(diǎn)中不共面的一個(gè)圖是(
A.
B.
C.
D.

【答案】D
【解析】解:在A中,由題意知在正方體中,PQ∥A'C',SR∥AC,所以PQ∥SR, 則P、Q、R、S四個(gè)點(diǎn)共面,故A不對(duì);
在B中,由題意知在正方體中,PQ∥A'C',SR∥A'C',
所以PQ∥SR,則P、Q、R、S四個(gè)點(diǎn)共面,故B不對(duì);
在C中,因?yàn)镻R和QS分別是相鄰側(cè)面的中位線,
所以PR∥BS,QS∥BD,即QR∥PA,所以P、Q、R、S四個(gè)點(diǎn)共面,故C不對(duì);
在D中,根據(jù)圖中幾何體得,P、Q、R、S四個(gè)點(diǎn)中任意兩個(gè)點(diǎn)都在兩個(gè)平面內(nèi),
QR∥BD,PS∥AB,因?yàn)锳B與BD相交,所以QR和PS是異面直線,
并且任意兩個(gè)點(diǎn)的連線既不平行也不相交,故四個(gè)點(diǎn)共面不共面,故D對(duì);
故選:D.
【考點(diǎn)精析】關(guān)于本題考查的平面的基本性質(zhì)及推論,需要了解如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),修建此矩形場(chǎng)地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=af1(x)+bf2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)給出函數(shù) ,h(x)是否為f1(x), f2(x)的生成函數(shù)?并說(shuō)明理由;
(2)設(shè) ,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè) ,取a>0,b>0,生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對(duì)于任意正實(shí)數(shù)x1 , x2且x1+x2=1.試問(wèn)是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個(gè)m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個(gè)半圓,固定點(diǎn)E為CD的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
(1)當(dāng)MN和AB之間的距離為1米時(shí),求此時(shí)三角通風(fēng)窗EMN的通風(fēng)面積;
(2)設(shè)MN與AB之間的距離為x米,試將三角通風(fēng)窗EMN的通風(fēng)面積S(平方米)表示成關(guān)于x的函數(shù)S=f(x);
(3)當(dāng)MN與AB之間的距離為多少米時(shí),三角通風(fēng)窗EMN的通風(fēng)面積最大?并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=(﹣x2+ax)ex , (x∈R,e為自然對(duì)數(shù)的底數(shù))
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)函數(shù)f(x)是否為R上的單調(diào)函數(shù),若是,求出a的取值范圍;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A﹣BD﹣C,有如下四個(gè)結(jié)論:
(1)AC⊥BD;
(2)△ACD是等邊三角形
(3)AB與平面BCD所成的角為60°;
(4)AB與CD所成的角為60°.
則正確結(jié)論的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在四棱錐V﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,其它四個(gè)側(cè)面都是側(cè)棱長(zhǎng)為 的等腰三角形.
(1)求二面角V﹣AB﹣C的平面角的大。
(2)求四棱錐V﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=1﹣nan(n∈N*
(1)計(jì)算a1 , a2 , a3 , a4;
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校擬建一塊周長(zhǎng)為400m的操場(chǎng)如圖所示,操場(chǎng)的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問(wèn)如何設(shè)計(jì)矩形的長(zhǎng)和寬?

查看答案和解析>>

同步練習(xí)冊(cè)答案