【題目】在直角坐標系xOy中,直線l的參數(shù)方程為,(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為(ρ2cosθ254sin2θ

1)求直線l的普通方程和曲線C的直角坐標方程;

2)若直線l與曲線C相切,求m的值.

【答案】(1)直線l的普通方程為x+2y42m0;曲線C的直角坐標方程為x2+y24x10(2)m

【解析】

1)由消參法可得直線的普通方程;由,,,代入化簡可得曲線的直角坐標方程;

2)求得曲線表示的圓的圓心和半徑,由直線和圓相切的條件:,運用點到直線的距離公式,解方程可得所求值.

解:(1)直線的參數(shù)方程為為參數(shù)),

可得

即直線的普通方程為,

曲線的極坐標方程為,

即為,

,,

可得

2)由(1)可得曲線表示以為圓心,為半徑的圓,

由直線與曲線相切,可得圓心到直線的距離為半徑,

即為,解得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】近年來,共享單車已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價,現(xiàn)從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況和優(yōu)惠活動評價的列聯(lián)表如下:

對優(yōu)惠活動好評

對優(yōu)惠活動不滿意

合計

對車輛狀況好評

對車輛狀況不滿意

合計

(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關(guān)系?

(2)為了回饋用戶,公司通過向用戶隨機派送騎行券,用戶可以將騎行券用于騎行付費,也可以通過轉(zhuǎn)贈給好友某用戶共獲得了張騎行券,其中只有張是一元券現(xiàn)該用戶從這張騎行券中隨機選取張轉(zhuǎn)贈給好友,求選取的張中至少有張是一元券的概率.

:下面的臨界值表僅供參考:

(參考公式: ,其中)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的單調(diào)區(qū)間;

2)若對于定義域內(nèi)任意的,恒成立,求的取值范圍;

3)記,若在區(qū)間內(nèi)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

1)證明:△ABC是正三角形;

2)如圖,點D在邊BC的延長線上,且BC2CD,AD,求sinBAD的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】瑞士數(shù)學家、物理學家歐拉發(fā)現(xiàn)任一凸多面體(即多面體內(nèi)任意兩點的連線都被完全包含在該多面體中,直觀上講是指沒有凹陷或孔洞的多面體)的頂點數(shù)V、棱數(shù)E及面數(shù)F滿足等式VE+F2,這個等式稱為歐拉多面體公式,被認為是數(shù)學領(lǐng)域最漂亮、簡潔的公式之一,現(xiàn)實生活中存在很多奇妙的幾何體,現(xiàn)代足球的外觀即取自一種不完全正多面體,它是由12塊黑色正五邊形面料和20塊白色正六邊形面料構(gòu)成的.20世紀80年代,化學家們成功地以碳原子為頂點組成了該種結(jié)構(gòu),排列出全世界最小的一顆足球,稱為巴克球(Buckyball.則巴克球的頂點個數(shù)為(

A.180B.120C.60D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為貫徹執(zhí)行黨中央不忘初心,牢記使命主題教育活動,增強企業(yè)的凝聚力和競爭力。某重裝企業(yè)的裝配分廠舉行裝配工人技術(shù)大比武,根據(jù)以往技術(shù)資料統(tǒng)計,某工人裝配第n件工件所用的時間(單位:分鐘)大致服從的關(guān)系為kM為常數(shù)).已知該工人裝配第9件工件用時20分鐘,裝配第M件工件用時12分鐘,那么可大致推出該工人裝配第4件工件所用時間是(

A.40分鐘B.35分鐘C.30分鐘D.25分鐘

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若.

(。┣笄在點處的切線方程;

(ⅱ)求函數(shù)在區(qū)間內(nèi)的極大值的個數(shù).

(2)若內(nèi)單調(diào)遞減,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1),求的單調(diào)區(qū)間;

(2)存在三個極值點,且,求的取值范圍,并證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,若底面是正三角形,側(cè)棱長,、分別為棱的中點,并且,則異面直線所成角為______;三棱錐的外接球的體積為______

查看答案和解析>>

同步練習冊答案