PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物,2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境質(zhì)量標準》,其中規(guī)定:居民區(qū)中的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.某城市環(huán)保部門隨機抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別 PM2.5(微克/立方米) 頻數(shù)(天) 頻率
第一組 (0,15] 4 0.1
第二組 (15,30] 12 0.3
第三組 (30,45] 8 0.2
第四組 (45,60] 8 0.2
第五組 (60,75] 4 0.1
第六組 (75,90] 4 0.1
(Ⅰ)求該樣本的平均數(shù)的估計值,并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進,并說明理由;
(Ⅱ)從這40天中,隨機抽取2天,記這2天中該居民區(qū)PM2.5的24小時平均濃度符合《環(huán)境空氣質(zhì)量標》的天數(shù)為ξ,求ξ的分布列及數(shù)學期望E(ξ).
考點:離散型隨機變量的期望與方差,頻率分布直方圖,古典概型及其概率計算公式
專題:計算題,概率與統(tǒng)計
分析:(Ⅰ)先求出去年該居民區(qū)PM2.5年平均濃度為40.5(微克/立方米).因為40.5>35,所以該居民區(qū)的環(huán)境需要改進.
(Ⅱ)記事件A表示“一天PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標準”,則P(A)=0.9.隨機變量ξ的可能取值為0,1,2.且ξ~B(2,0.9).此能求出變量ξ的分布列和數(shù)學期望Eξ.
解答: 解:(Ⅰ)去年該居民區(qū)PM2.5年平均濃度為7.5×0.1+22.5×0.3+37.5×0.2+52.5×0.2+67.5×0.1+82.5×0.1=40.5(微克/立方米).
因為40.5>35,所以去年該居民區(qū)PM2.5年平均濃度不符合環(huán)境空氣質(zhì)量標準,
故該居民區(qū)的環(huán)境需要改進;
(Ⅱ)記事件A表示“一天PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標準”,則P(A)=0.9
隨機變量ξ的可能取值為0,1,2.且ξ~B(2,0.9).
所以P(ξ=k)=
C
k
2
•0.9k•0.12-k
(k=0,1,2)
所以變量ξ的分布列為
ξ 0 1 2
p 0.01 0.18 0.81
Eξ=0×0.01+1×0.18+2×0.81=1.8.
點評:本小題主要考查頻率分布直方表、隨機變量的分布列、數(shù)學期望等基礎知識,考查數(shù)據(jù)處理能力、運算求解能力以及應用用意識,考查必然與或然思想等.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,主視圖與側(cè)視圖都是邊長為
2的正三角形,俯視圖為正方形,則該幾何體的全面積為( 。
A、4
B、8
C、12
D、4+4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x+
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π],求函數(shù)f(x)的最大值和最小值及相應的x的值;
(Ⅱ)設△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,c=
3
,f(C)=1,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sin2x,-
1
2
),
b
=(
3
2
,cos2x),x∈R,設函數(shù)f(x)=
a
b

(Ⅰ)求f(x)的最小正周期.
(Ⅱ)求f(x)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出下列函數(shù)的圖象,并寫出函數(shù)的值域.
(1)y=x+
|x|
x
            
(2)y=|x-2|+|x+1|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校為了解高一期末數(shù)學考試的情況,從高一的所有學生數(shù)學試卷中隨機抽取n份試卷進行成績分析,得到數(shù)學成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學生人數(shù)為6.
(Ⅰ)估計所抽取的數(shù)學成績的眾數(shù);
(Ⅱ)用分層抽樣的方法在成績?yōu)閇80,90)和[90,100]這兩組中共抽取5個學生,并從這5個學生中任取2人進行點評,求分數(shù)在[90,100]恰有1人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
若廣告費支出x與銷售額y回歸直線方程為y=6.5x+a(a∈R).
(I)試預測當廣告費支出為12萬元時,銷售額是多少?
(Ⅱ)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的周長為6,且sinA+sinB=2sinC,求邊AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)在橢圓C:
x2
25
+
y2
16
=1上,F(xiàn)為橢圓C的右焦點,若點M滿足|MF|=1.且MP⊥MF,則線段|PM|的最小值為
 

查看答案和解析>>

同步練習冊答案