【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)易知根據(jù)條件確定形狀,即得C坐標,代入橢圓方程可得,(Ⅱ)即先判斷是否成立,設的直線方程,與橢圓聯(lián)立方程組解得坐標,根據(jù)、關系可得坐標,利用斜率坐標公式即得斜率,進而判斷成立,然后根據(jù)兩點間距離公式計算長度最大值,即可得的最大值.
(Ⅰ)∵, ∴
又,即,2
∴是等腰直角三角形
∵, ∴
因為點在橢圓上,∴∴
∴所求橢圓方程為
(Ⅱ)對于橢圓上兩點、,∵的平分線總是垂直于軸
∴與所在直線關于對稱,設且,則,
則的直線方程 ①
的直線方 ②
將①代入得 ③
∵在橢圓上,∴是方程③的一個根,∴
以替換,得到.
因為,所以∴ ∴,∴存在實數(shù),使得
當時即時取等號,
又,
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與圓心為坐標原點的圓相切.
(1)求圓的方程;
(2)過點的直線與圓交于 兩點,若弦長,求直線的斜率的值;
(3)過點作兩條相異直線分別與圓相交于,且直線和直線的傾斜角互補,試著判斷向量和是否共線?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與拋物線相交于兩個不同點,點是拋物線在點處的切線的交點。
(1)若直線經(jīng)過拋物線的焦點,求證:;
(2)若,且直線經(jīng)過點,求的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱錐中,平面平面ABC,,,BD=3,AD=1,AC=BC,M為線段AB的中點.
(Ⅰ)求證:平面ACD;
(Ⅱ)求異面直線MD與BC所成角的余弦值;
(Ⅲ)求直線MD與平面ACD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=x3+ax2+bx+1的導數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設g(x)=f′(x)e-x,求函數(shù)g(x)的極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.
(1)求證:平面平面;
(2)若為棱的中點,求異面直線與所成角的余弦值;
(3)若二面角大小為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,兩焦點與短軸的一個端點的連線構成的三角形面積為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設與圓O:相切的直線l交橢圓C于A,B兩點(O為坐標原點),求△AOB面積的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,點E,F分別是BC,PC的中點,用向量方法解決以下問題:
(1)求異面直線AE與PD所成角的大小;
(2)若AB=AP,求二面角E﹣AF﹣C的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市有一特色酒店由一些完全相同的帳篷構成.每座帳篷的體積為立方米,且分上下兩層,其中上層是半徑為(單位:米)的半球體,下層是半徑為米,高為米的圓柱體(如圖).經(jīng)測算,上層半球體部分每平方米建造費用為2千元,下方圓柱體的側面、隔層和地面三個部分平均每平方米建造費用為3千元,設每座帳篷的建造費用為千元.
參考公式:球的體積,球的表面積,其中為球的半徑.
(1)求關于的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)當半徑為何值時,每座帳篷的建造費用最小,并求出最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com