【題目】已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.
(1)若A∩B=[2,4],求實數(shù)m的值;
(2)設(shè)全集為R,若ARB,求實數(shù)m的取值范圍.
【答案】
(1)解:由已知得A={x|x2﹣2x﹣8≤0,x∈R}=[﹣2,4],
B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }=[m﹣3,m].
∵A∩B=[2,4],∴ ∴m=5.
(2)解:∵B=[m﹣3,m],∴RB=(﹣∞,m﹣3)∪(m,+∞).
∵ARB,
∴m﹣3>4或m<﹣2.
∴m>7或m<﹣2.
∴m∈(﹣∞,﹣2)∪(7,+∞).
【解析】(1)根據(jù)所給的兩個集合的不等式,寫出兩個集合對應(yīng)的最簡形式,根據(jù)兩個集合的交集,看出兩個集合的端點之間的關(guān)系,求出結(jié)果.(2)根據(jù)所求的集合B,寫出集合B的補集,根據(jù)集合A是B的補集的子集,求出兩個集合的端點之間的關(guān)系,求出m的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的斜率為k,經(jīng)過點(1,﹣1),將直線向右平移3個單位,再向上平移2個單位,得到直線m,若直線m不經(jīng)過第四象限,則直線l的斜率k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩個非零向量 與 不共線.
(1)若 = + , =2 +8 , =3( ﹣ ).求證:A,B,D三點共線;
(2)試確定實數(shù)k,使k + 和 +k 共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實數(shù)m的范圍;
(2)在方程表示圓時,該圓與直線l:x+2y﹣4=0相交于M、N兩點,且|MN|= ,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過直線3x+4y﹣2=0與直線2x+y+2=0的交點P,且垂直于直線x﹣2y﹣1=0.
(1)求直線l的方程;
(2)求直線l關(guān)于原點O對稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在高二年級實行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)學(xué)科提供5種不同層次的課程,分別稱為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個學(xué)生只能從5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級1800名學(xué)生的數(shù)學(xué)選課人數(shù)統(tǒng)計如表:
課程 | 數(shù)學(xué)1 | 數(shù)學(xué)2 | 數(shù)學(xué)3 | 數(shù)學(xué)4 | 數(shù)學(xué)5 | 合計 |
選課人數(shù) | 180 | 540 | 540 | 360 | 180 | 1800 |
為了了解數(shù)學(xué)成績與學(xué)生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學(xué)生中抽取10人進(jìn)行分析.
(1)從選出的10名學(xué)生中隨機抽取3人,求這3人中至少有2人選擇數(shù)學(xué)2的概率;
(2)從選出的10名學(xué)生中隨機抽取3人,記這3人中選擇數(shù)學(xué)2的人數(shù)為,選擇數(shù)學(xué)1的人數(shù)為,設(shè)隨機變量,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(11)的值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,橢圓C過點A ,兩個焦點為(﹣1,0),(1,0).
(1)求橢圓C的方程;
(2)E,F(xiàn)是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一(1)班參加校生物競賽學(xué)生成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選兩人進(jìn)行某項研究,求至少有一人分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com