【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設計師單獨設計出來的玩偶.由于盒子上沒有標注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了盲盒經(jīng)濟”.某款盲盒內(nèi)可能裝有某一套玩偶的、三種樣式,且每個盲盒只裝一個.

1)若每個盲盒裝有、三種樣式玩偶的概率相同.某同學已經(jīng)有了樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?

2)某銷售網(wǎng)點為調(diào)查該款盲盒的受歡迎程度,隨機發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計,有的人購買了該款盲盒,在這些購買者當中,女生占;而在未購買者當中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認為購買該款盲盒與性別有關?

女生

男生

總計

購買

未購買

總計

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

3)該銷售網(wǎng)點已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:

周數(shù)

1

2

3

4

5

6

盒數(shù)

16

______

23

25

26

30

由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點負責人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進行檢驗.

①請用45、6周的數(shù)據(jù)求出關于的線性回歸方程;

(注:,

②若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2盒,則認為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?

【答案】1;(2)填表見解析,有把握認為購買該款盲盒與性別有關;(3)①;②可靠.

【解析】

1)列舉出基本事件的總數(shù)和事件“他恰好能收集齊這三種樣式”所包含的基本事件的個數(shù),利用古典概型的概率計算公式,即可求解.

2)根據(jù)題意,得出的列聯(lián)表,利用公式求得的值,結(jié)合附表,即可得到結(jié)論;

3)①求得的值,根據(jù)公式求得的值,求得回歸直線方程;②當時,比較即可得到結(jié)論.

1)由題意,基本事件空間為

,其中基本事件的個數(shù)為9個,

設事件為:他恰好能收集齊這三種樣式,則,

其中基本事件的個數(shù)為2

所以他恰好能收集齊這三種樣式的概率.

2

女生

男生

總計

購買

40

20

60

未購買

70

70

140

總計

110

90

20

.

又因為,故有把握認為購買該款盲盒與性別有關”.

3)①由數(shù)據(jù),求得,.

由公式求得

.

所以關于的線性回歸方程為.

②當時,,;

同樣,當時,.

所以,所得到的線性回歸方程是可靠的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2019年下半年以來,各地區(qū)陸續(xù)出臺了“垃圾分類”的相關管理條例,實行“垃圾分類”能最大限度地減少垃圾處置量,實現(xiàn)垃圾資源利用,改善生存環(huán)境質(zhì)量.某部門在某小區(qū)年齡處于區(qū)間內(nèi)的人中隨機抽取人進行了“垃圾分類”相關知識掌握和實施情況的調(diào)查,并把達到“垃圾分類”標準的人稱為“環(huán)保族”,得到圖各年齡段人數(shù)的頻率分布直方圖和表中統(tǒng)計數(shù)據(jù).

1)求的值;

2)根據(jù)頻率分布直方圖,估計這人年齡的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值代替,結(jié)果保留整數(shù));

3)從年齡段在的“環(huán)保族”中采用分層抽樣的方法抽取9人進行專訪,并在這9人中選取2人作為記錄員,求選取的2名記錄員中至少有一人年齡在區(qū)間中的概率.

組數(shù)

分組

“環(huán)保族”人數(shù)

占本組頻率

第一組

45

0.75

第二組

25

第三組

0.5

第四組

3

0.2

第五組

3

0.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖數(shù)據(jù)如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹苗的中位數(shù)大于乙種樹苗的中位數(shù),且甲種樹苗比乙種樹苗長得整齊

B.甲種樹苗的中位數(shù)大于乙種樹苗的中位數(shù),但乙種樹苗比甲種樹苗長得整齊

C.乙種樹苗的中位數(shù)大于甲種樹苗的中位數(shù),且乙種樹苗比甲種樹苗長得整齊

D.乙種樹苗的中位數(shù)大于甲種樹苗的中位數(shù),但甲種樹苗比乙種樹苗長得整齊

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展和人民生活水平的提高,以及城市垃圾分類收集的實施和推廣,我國居民生活垃圾的平均熱值逐年.上升,垃圾焚燒發(fā)電的噸上網(wǎng)電量(單位:千瓦時/噸)顯著增加.下表為某垃圾焚燒發(fā)電廠最近五個月的生產(chǎn)數(shù)據(jù).

月份代碼

噸上網(wǎng)電量

若從該發(fā)電廠這五個月的生產(chǎn)數(shù)據(jù)(噸上網(wǎng)電量)中任選兩個,求其中至少有一個生產(chǎn)數(shù)據(jù)超過的概率;

通過散點圖(如圖)可以發(fā)現(xiàn),變量之間的關系可以用函數(shù)(其中為自然對數(shù)的底數(shù))來擬合,求常數(shù),的值.

參考公式:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計公式分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)在點P(1,)處的切線方程;

(2)若關于x的不等式有且僅有三個整數(shù)解,求實數(shù)t的取值范圍

(3)存在兩個正實數(shù),滿足,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的零點構(gòu)成一個公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個單位,得到函數(shù)的圖象.關于函數(shù),下列說法正確的是( )

A. 上是增函數(shù)B. 其圖象關于直線對稱

C. 函數(shù)是偶函數(shù)D. 在區(qū)間上的值域為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了調(diào)查學生數(shù)學素養(yǎng)的情況,從初中部、高中部各隨機抽取100名學生進行測試.初中部的100名學生的成績(單位:分)的頻率分布直方圖如圖所示.

高中部的100名學生的成績(單位:分)的頻數(shù)分布表如下:

測試分數(shù)

頻數(shù)

5

20

35

25

15

把成績分為四個等級:60分以下為級,60分(含60)到80分為級,80分(含80)到90分為級,90分(含90)以上為.

1)根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有99%的把握認為學生數(shù)學素養(yǎng)成績“級”與“所在級部”有關?

不是

合計

初中部

高中部

合計

注:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

2)若這個學校共有9000名高中生,用頻率估計概率,用樣本估計總體,試估計這個學校的高中生的數(shù)學素養(yǎng)成績?yōu)?/span>級的人數(shù),并估計數(shù)學素養(yǎng)成績的平均分(用組中值代表本組分數(shù));

3)把初中部的級同學編號為,,,,高中部的級同學編號為,,,,從初中部級、高中部級中各選一名同學,求這兩名同學的編號奇偶性相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費和年銷售量)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中

1)根據(jù)散點圖判斷,哪一個適宜作為年銷售量y關于年宣傳費x的回歸方類型?給出判斷即可,不必說明理由

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關于x的回歸方程;

3)已知這種產(chǎn)品的年利潤zx、y的關系為根據(jù)(2)的結(jié)果回答下列問題:

①年宣傳費時,年銷售量及年利潤的預報值是多少?

②年宣傳費x為何值時,年利潤的預報值最大?

附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,,側(cè)面底面,且,為棱上一點,且

1)求證:平面;

2)若二面角的余弦值為,求四棱錐的體積.

查看答案和解析>>

同步練習冊答案