【題目】某學(xué)校為了調(diào)查學(xué)生數(shù)學(xué)素養(yǎng)的情況,從初中部、高中部各隨機(jī)抽取100名學(xué)生進(jìn)行測試.初中部的100名學(xué)生的成績(單位:分)的頻率分布直方圖如圖所示.

高中部的100名學(xué)生的成績(單位:分)的頻數(shù)分布表如下:

測試分?jǐn)?shù)

頻數(shù)

5

20

35

25

15

把成績分為四個(gè)等級:60分以下為級,60分(含60)到80分為級,80分(含80)到90分為級,90分(含90)以上為.

1)根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有99%的把握認(rèn)為學(xué)生數(shù)學(xué)素養(yǎng)成績“級”與“所在級部”有關(guān)?

不是

合計(jì)

初中部

高中部

合計(jì)

注:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

2)若這個(gè)學(xué)校共有9000名高中生,用頻率估計(jì)概率,用樣本估計(jì)總體,試估計(jì)這個(gè)學(xué)校的高中生的數(shù)學(xué)素養(yǎng)成績?yōu)?/span>級的人數(shù),并估計(jì)數(shù)學(xué)素養(yǎng)成績的平均分(用組中值代表本組分?jǐn)?shù));

3)把初中部的級同學(xué)編號為,,,,高中部的級同學(xué)編號為,,,,從初中部級、高中部級中各選一名同學(xué),求這兩名同學(xué)的編號奇偶性相同的概率.

【答案】1)填表見解析;沒有;(2級的人數(shù)約為;數(shù)學(xué)素養(yǎng)成績的平均分估計(jì)值為;(3.

【解析】

1)根據(jù)題意完善列聯(lián)表,計(jì)算,根據(jù)臨界值得出結(jié)論.
2)由頻數(shù)分布表可知所抽取的100人中,級有15人,所以級的人數(shù)約為,再由公式計(jì)算數(shù)學(xué)素養(yǎng)成績的平均分.
3)先列舉出基本事件總數(shù),再得出兩名同學(xué)的編號奇偶性相同的基本事件數(shù),得出概率.

解:(1)由題意可得列聯(lián)表如下:

不是

合計(jì)

初中部

95

5

100

高中部

85

15

100

合計(jì)

180

20

200

利用表中數(shù)據(jù)得到的觀測值.

所以沒有99%的把握認(rèn)為學(xué)生數(shù)學(xué)素養(yǎng)成績“級”與“所在級部”有關(guān).

2)由頻數(shù)分布表可知所抽取的100人中,級有15人,

所以9000名高中生中,級的人數(shù)約為.

高中部的100名學(xué)生的成績(單位:分)的頻率分布表如下:

測試分?jǐn)?shù)

頻數(shù)

5

20

35

25

15

頻率

0.05

0.2

0.35

0.25

0.15

數(shù)學(xué)素養(yǎng)成績的平均分估計(jì)值為.

3)設(shè)基本事件空間為

,,,,

,,,,

,,,,

,,,,

,,,,

共有25個(gè)基本事件.

其中兩名同學(xué)的編號奇偶性相同的情形為,,,,

,,,,

共有(種),則所求概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對指數(shù)有影響.

身高較矮

身高較高

合計(jì)

體重較輕

體重較重

合計(jì)

2)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);

編號

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.

參考數(shù)據(jù):

,

,,

參考公式:,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)當(dāng)時(shí),判斷直線與曲線的位置關(guān)系;

2)若直線與曲線相交所得的弦長為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設(shè)計(jì)師單獨(dú)設(shè)計(jì)出來的玩偶.由于盒子上沒有標(biāo)注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了盲盒經(jīng)濟(jì)”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個(gè)盲盒只裝一個(gè).

1)若每個(gè)盲盒裝有、三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了樣式的玩偶,若他再購買兩個(gè)這款盲盒,恰好能收集齊這三種樣式的概率是多少?

2)某銷售網(wǎng)點(diǎn)為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計(jì),有的人購買了該款盲盒,在這些購買者當(dāng)中,女生占;而在未購買者當(dāng)中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認(rèn)為購買該款盲盒與性別有關(guān)?

女生

男生

總計(jì)

購買

未購買

總計(jì)

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

3)該銷售網(wǎng)點(diǎn)已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:

周數(shù)

1

2

3

4

5

6

盒數(shù)

16

______

23

25

26

30

由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點(diǎn)負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進(jìn)行檢驗(yàn).

①請用45、6周的數(shù)據(jù)求出關(guān)于的線性回歸方程

(注:,

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2盒,則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點(diǎn)的平面與棱,分別交于,兩點(diǎn).

(Ⅰ)求證:;

(Ⅱ)求證:四邊形是平行四邊形;

(Ⅲ)若,試判斷二面角的大小能否為?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)設(shè)的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:

(2)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線軸有唯一公共點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)曲線在點(diǎn)處的切線斜率為.若兩個(gè)不相等的正實(shí)數(shù),滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列滿足,則下列正確的是(

A.當(dāng)時(shí),遞增,遞增

B.當(dāng)時(shí),遞增,遞減

C.當(dāng)時(shí),遞增,遞減

D.當(dāng)時(shí),遞減,遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)兩個(gè)定點(diǎn)和點(diǎn)是動點(diǎn),且直線,的斜率乘積為常數(shù),設(shè)點(diǎn)的軌跡為.

① 存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離之和為定值;

② 存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離之和為定值;

③ 不存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離差的絕對值為定值;

④ 不存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離差的絕對值為定值.

其中正確的命題是_______________.(填出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案