【題目】某學(xué)校為了調(diào)查學(xué)生數(shù)學(xué)素養(yǎng)的情況,從初中部、高中部各隨機(jī)抽取100名學(xué)生進(jìn)行測試.初中部的100名學(xué)生的成績(單位:分)的頻率分布直方圖如圖所示.
高中部的100名學(xué)生的成績(單位:分)的頻數(shù)分布表如下:
測試分?jǐn)?shù) | |||||
頻數(shù) | 5 | 20 | 35 | 25 | 15 |
把成績分為四個(gè)等級:60分以下為級,60分(含60)到80分為級,80分(含80)到90分為級,90分(含90)以上為級.
(1)根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有99%的把握認(rèn)為學(xué)生數(shù)學(xué)素養(yǎng)成績“級”與“所在級部”有關(guān)?
不是級 | 級 | 合計(jì) | |
初中部 | |||
高中部 | |||
合計(jì) |
注:,其中.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)若這個(gè)學(xué)校共有9000名高中生,用頻率估計(jì)概率,用樣本估計(jì)總體,試估計(jì)這個(gè)學(xué)校的高中生的數(shù)學(xué)素養(yǎng)成績?yōu)?/span>級的人數(shù),并估計(jì)數(shù)學(xué)素養(yǎng)成績的平均分(用組中值代表本組分?jǐn)?shù));
(3)把初中部的級同學(xué)編號為,,,,,高中部的級同學(xué)編號為,,,,,從初中部級、高中部級中各選一名同學(xué),求這兩名同學(xué)的編號奇偶性相同的概率.
【答案】(1)填表見解析;沒有;(2)級的人數(shù)約為;數(shù)學(xué)素養(yǎng)成績的平均分估計(jì)值為;(3).
【解析】
(1)根據(jù)題意完善列聯(lián)表,計(jì)算,根據(jù)臨界值得出結(jié)論.
(2)由頻數(shù)分布表可知所抽取的100人中,級有15人,所以級的人數(shù)約為,再由公式計(jì)算數(shù)學(xué)素養(yǎng)成績的平均分.
(3)先列舉出基本事件總數(shù),再得出兩名同學(xué)的編號奇偶性相同的基本事件數(shù),得出概率.
解:(1)由題意可得列聯(lián)表如下:
不是級 | 級 | 合計(jì) | |
初中部 | 95 | 5 | 100 |
高中部 | 85 | 15 | 100 |
合計(jì) | 180 | 20 | 200 |
利用表中數(shù)據(jù)得到的觀測值.
所以沒有99%的把握認(rèn)為學(xué)生數(shù)學(xué)素養(yǎng)成績“級”與“所在級部”有關(guān).
(2)由頻數(shù)分布表可知所抽取的100人中,級有15人,
所以9000名高中生中,級的人數(shù)約為.
高中部的100名學(xué)生的成績(單位:分)的頻率分布表如下:
測試分?jǐn)?shù) | |||||
頻數(shù) | 5 | 20 | 35 | 25 | 15 |
頻率 | 0.05 | 0.2 | 0.35 | 0.25 | 0.15 |
數(shù)學(xué)素養(yǎng)成績的平均分估計(jì)值為.
(3)設(shè)基本事件空間為,
,,,,
,,,,
,,,,
,,,,
,,,,
共有25個(gè)基本事件.
其中兩名同學(xué)的編號奇偶性相同的情形為,,,,,
,,,,,,,
共有(種),則所求概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對指數(shù)有影響.
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(2)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,
,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),判斷直線與曲線的位置關(guān)系;
(2)若直線與曲線相交所得的弦長為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設(shè)計(jì)師單獨(dú)設(shè)計(jì)出來的玩偶.由于盒子上沒有標(biāo)注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟(jì)”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個(gè)盲盒只裝一個(gè).
(1)若每個(gè)盲盒裝有、、三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了樣式的玩偶,若他再購買兩個(gè)這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點(diǎn)為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計(jì),有的人購買了該款盲盒,在這些購買者當(dāng)中,女生占;而在未購買者當(dāng)中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認(rèn)為購買該款盲盒與性別有關(guān)?
女生 | 男生 | 總計(jì) | |
購買 | |||
未購買 | |||
總計(jì) |
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點(diǎn)已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 | 30 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點(diǎn)負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進(jìn)行檢驗(yàn).
①請用4、5、6周的數(shù)據(jù)求出關(guān)于的線性回歸方程;
(注:,)
②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2盒,則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點(diǎn),的平面與棱,分別交于,兩點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:四邊形是平行四邊形;
(Ⅲ)若,試判斷二面角的大小能否為?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)設(shè)是的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:
(2)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線與軸有唯一公共點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)曲線在點(diǎn)處的切線斜率為.若兩個(gè)不相等的正實(shí)數(shù),滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列滿足,則下列正確的是( )
A.當(dāng)時(shí),遞增,遞增
B.當(dāng)時(shí),遞增,遞減
C.當(dāng)時(shí),遞增,遞減
D.當(dāng)時(shí),遞減,遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩個(gè)定點(diǎn)和點(diǎn),是動點(diǎn),且直線,的斜率乘積為常數(shù),設(shè)點(diǎn)的軌跡為.
① 存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離之和為定值;
② 存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離之和為定值;
③ 不存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離差的絕對值為定值;
④ 不存在常數(shù),使上所有點(diǎn)到兩點(diǎn)距離差的絕對值為定值.
其中正確的命題是_______________.(填出所有正確命題的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com