【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)討論在區(qū)間上的零點(diǎn)個(gè)數(shù).
【答案】(1).(2)見解析
【解析】
(1)求出,從而可知切線的斜率,由直線的點(diǎn)斜式可求切線方程.
(2)設(shè),通過導(dǎo)數(shù)可探究單調(diào)性,再結(jié)合,,,,可得函數(shù)圖像,通過討論當(dāng)或,當(dāng)或或,當(dāng)或時(shí),結(jié)合函數(shù)圖像,可求零點(diǎn)個(gè)數(shù).
解:(1)因?yàn)?/span>,所以,所以,
所以,,則,故切線方程為.
(2)令,得,設(shè),
則,由 恒成立,
令,得;令,得或,
則在和上單調(diào)遞減,在上單調(diào)遞增.
因?yàn)?/span>,,,
.則的簡(jiǎn)圖為
當(dāng)或時(shí),無解,即在區(qū)間上沒有零點(diǎn);
當(dāng)或或時(shí),在區(qū)間上有且僅有一個(gè)零點(diǎn);
當(dāng)或時(shí),在區(qū)間上有兩個(gè)零點(diǎn).
綜上,當(dāng)或時(shí),在區(qū)間上沒有零點(diǎn);
當(dāng)或或時(shí),在區(qū)間上有且僅有一個(gè)零點(diǎn);
當(dāng)或時(shí),在區(qū)間上有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】七巧板是中國(guó)古代勞動(dòng)人民的發(fā)明,其歷史至少可以追溯到公元前一世紀(jì),后清陸以湉《冷廬雜識(shí)》卷一中寫道“近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余”在18世紀(jì),七巧板流傳到了國(guó)外,被譽(yù)為“東方魔板”,至今英國(guó)劍橋大學(xué)的圖書館里還珍藏著一部《七巧新譜》.完整圖案為一正方形(如圖):五塊等腰直角三角形、一塊正方形和一塊平行四邊形,如果在此正方形中隨機(jī)取一點(diǎn),那么此點(diǎn)取自陰影部分的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公比大于0的等比數(shù)列{an}中,已知a3a5=a4,且a2,3a4,a3成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)已知Sn=a1a2…an,試問當(dāng)n為何值時(shí),Sn取得最大值,并求Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知口袋里裝有4個(gè)大小相同的小球,其中兩個(gè)標(biāo)有數(shù)字1,兩個(gè)標(biāo)有數(shù)字2.
(1)從口袋里任意取一球,求取到標(biāo)有數(shù)字2的球的概率;
(2)第一次從口袋里任意取一球,放回口袋里后第二次再任意取一球,記第一次與第二次取到小球上的數(shù)字之和為.當(dāng)為何值時(shí),其發(fā)生的概率最大?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了有效地加強(qiáng)高中生自主管理能力,推出了一系列措施,其中自習(xí)課時(shí)間的自主管理作為重點(diǎn)項(xiàng)目,學(xué)校有關(guān)處室制定了“高中生自習(xí)課時(shí)間自主管理方案”.現(xiàn)準(zhǔn)備對(duì)該“方案”進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該“方案”,調(diào)查人員分別在各個(gè)年級(jí)隨機(jī)抽取若干學(xué)生對(duì)該“方案”進(jìn)行評(píng)分,并將評(píng)分分成,,,七組,繪制成如圖所示的頻率分布直方圖.
相關(guān)規(guī)則為①采用百分制評(píng)分,內(nèi)認(rèn)定為對(duì)該“方案”滿意,不低于80分認(rèn)定為對(duì)該“方案”非常滿意,60分以下認(rèn)定為對(duì)該“方案”不滿意;②學(xué)生對(duì)“方案”的滿意率不低于即可啟用該“方案”;③用樣本的頻率代替概率.
(1)從該校學(xué)生中隨機(jī)抽取1人,求被抽取的這位同學(xué)非常滿意該“方案”的概率,并根據(jù)頻率分布直方圖求學(xué)生對(duì)該“方案”評(píng)分的中位數(shù).
(2)根據(jù)所學(xué)統(tǒng)計(jì)知識(shí),判斷該校是否啟用該“方案”,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若在,處的導(dǎo)數(shù)相等,證明:;
(2)若有兩個(gè)不同的零點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是直角梯形,AB=2CD=2PD=2,PC,且有PD⊥AD,AD⊥CD,AB∥CD.
(1)證明:PD⊥平面ABCD;
(2)若四棱錐P﹣ABCD的體積為,求四棱錐P﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)A是直線上的動(dòng)點(diǎn),過作直線,,線段的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)若點(diǎn),是直線上兩個(gè)不同的點(diǎn),且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面建成小康社會(huì)的決勝階段,讓貧困地區(qū)同全國(guó)人民共同進(jìn)入全面小康社會(huì)是我們黨的莊嚴(yán)承諾.在“脫真貧、真脫貧”的過程中,精準(zhǔn)扶貧助推社會(huì)公平顯得尤其重要.若某農(nóng)村地區(qū)有200戶貧困戶,經(jīng)過一年扶貧后,對(duì)該地區(qū)的“精準(zhǔn)扶貧”的成效檢查驗(yàn)收.從這200戶貧困戶中隨機(jī)抽出50戶,對(duì)各戶的人均年收入(單位:千元)進(jìn)行調(diào)查得到如下頻數(shù)表:
人均年收入 | ||||||
頻數(shù) | 2 | 3 | 10 | 20 | 10 | 5 |
若人均年收入在4000元以下的判定為貧困戶,人均年收入在4000元~8000元的判定為脫貧戶,人均年收入達(dá)到8000元的判定為小康戶.
(1)用樣本估計(jì)總體,估計(jì)該地區(qū)還有多少戶沒有脫貧;
(2)為了了解未脫貧的原因,從抽取的50戶中用分層抽樣的方法抽10戶進(jìn)行調(diào)研.
①貧困戶、脫貧戶、小康戶分別抽到的人數(shù)是多少?
②從被抽到的脫貧戶和小康戶中各選1人做經(jīng)驗(yàn)介紹,求小康戶中人均年收入最高的一戶被選到的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com