【題目】近年來(lái),某市為促進(jìn)生活垃圾的分類(lèi)處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類(lèi),并分別設(shè)置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾分類(lèi)投放情況,先隨機(jī)抽取了該市三類(lèi)垃圾箱總計(jì)1000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸);
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)試估計(jì)廚余垃圾投放正確的概率;
(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率;
(3)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c的方差s2最大時(shí),寫(xiě)出a,b,c的值(結(jié)論不要求證明),并求此時(shí)s2的值.
(求:S2= [ + +…+ ],其中 為數(shù)據(jù)x1 , x2 , …,xn的平均數(shù))
【答案】
(1)解:由題意可知:廚余垃圾600噸,投放到“廚余垃圾”箱400噸,故廚余垃圾投放正確的概率為
(2)解:由題意可知:生活垃圾投放錯(cuò)誤有200+60+20+20=300,故生活垃圾投放錯(cuò)誤的概率為
(3)解:由題意可知:∵a+b+c=600,∴a,b,c的平均數(shù)為200
∴ = ,
∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥a2+b2+c2,因此有當(dāng)a=600,b=0,c=0時(shí),有s2=80000
【解析】(1)廚余垃圾600噸,投放到“廚余垃圾”箱400噸,故可求廚余垃圾投放正確的概率;(2)生活垃圾投放錯(cuò)誤有200+60+20+20=300,故可求生活垃圾投放錯(cuò)誤的概率;(3)計(jì)算方差可得 = ,因此有當(dāng)a=600,b=0,c=0時(shí),有s2=80000.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解極差、方差與標(biāo)準(zhǔn)差的相關(guān)知識(shí),掌握標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時(shí),樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒(méi)有離散性;方差與原始數(shù)據(jù)單位不同,解決實(shí)際問(wèn)題時(shí),多采用標(biāo)準(zhǔn)差.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區(qū)間表示);
(2)求函數(shù)f(x)=2x3﹣3(1+a)x2+6ax在D內(nèi)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),( ),圓C的參數(shù)方程 (θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專(zhuān)論測(cè)高望遠(yuǎn).其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問(wèn)島高及去表各幾何?翻譯如下:要測(cè)量海島上一座山峰的高度,立兩根高三丈的標(biāo)桿和,前后兩竿相距步,使后標(biāo)桿桿腳與前標(biāo)桿桿腳與山峰腳在同一直線上,從前標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、、三點(diǎn)共線,從后標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、三點(diǎn)也共線,則山峰的高度__________步.(古制步尺,里丈尺步)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 | 1 | ﹣0.8 |
0.1 | ﹣0.3 | ﹣1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
1 | 1 | c |
a | b | ﹣1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝品廠要設(shè)計(jì)一個(gè)如圖1所示的工藝品,現(xiàn)有某種型號(hào)的長(zhǎng)方形材料如圖2所示,其周長(zhǎng)為4m,這種材料沿其對(duì)角線折疊后就出現(xiàn)圖1的情況.如圖,ABCD(AB>AD)為長(zhǎng)方形的材料,沿AC折疊后AB'交DC于點(diǎn)P,設(shè)△ADP的面積為S2 , 折疊后重合部分△ACP的面積為S1 .
(Ⅰ)設(shè)AB=xm,用x表示圖中DP的長(zhǎng)度,并寫(xiě)出x的取值范圍;
(Ⅱ)求面積S2最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長(zhǎng)和寬?
(Ⅲ)求面積(S1+2S2)最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長(zhǎng)和寬?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱(chēng)x0是f(x)的一個(gè)“次不動(dòng)點(diǎn)”,也稱(chēng)f(x)在區(qū)間D上存在次不動(dòng)點(diǎn).若函數(shù)f(x)=ax2﹣3x﹣a+ 在區(qū)間[1,4]上存在次不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0, )
C.[ ,+∞)
D.(﹣∞, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0且a≠1,設(shè)命題p:函數(shù)y=loga(x-1)在(1,+∞)上單調(diào)遞減,命題q:曲線y=x2+(a-2)x+4與x軸交于不同的兩點(diǎn).若“p且q”為真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com