【題目】已知數(shù)列{bn}滿足bn=3bn﹣1+2(n≥2),b1=1.?dāng)?shù)列{an}的前n項(xiàng)和為Sn , 滿足Sn=4an+2
(1)求證:{bn+1}是等比數(shù)列并求出數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)和公式.
【答案】
(1)證明:∵數(shù)列{bn}滿足bn=3bn﹣1+2(n≥2),b1=1.
∴bn+1=3(bn﹣1+1),∴數(shù)列{bn+1}是等比數(shù)列,首項(xiàng)為2,公比為3,
∴bn+1=2×3n﹣1,即bn=2×3n﹣1﹣1
(2)解:∵Sn=4an+2,∴n=1時(shí),a1=4a1+2,解得a1=- .
n≥2時(shí),an=Sn﹣Sn﹣1=4an+2﹣(4an﹣1+2),化為:an= an﹣1,
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為﹣ ,公比為 .
∴an=﹣ × .
Sn=﹣4× × +2=﹣ +2
【解析】(1)數(shù)列{bn}滿足bn=3bn﹣1+2(n≥2),b1=1.變形為:bn+1=3(bn﹣1+1),利用等比數(shù)列的定義通項(xiàng)公式即可得出.(2)利用遞推關(guān)系可得數(shù)列{an}是等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式及其求和公式即可得出.
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是線段AD上一點(diǎn),AM=AB,DM=DC,SM⊥AD. (Ⅰ)證明:BM⊥平面SMC;
(Ⅱ)若SB與平面ABCD所成角為 ,N為棱SC上的動(dòng)點(diǎn),當(dāng)二面角S﹣BM﹣N為 時(shí),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+2ex+m﹣1,g(x)=x+ (x>0).
(1)若y=g(x)﹣m有零點(diǎn),求m的取值范圍;
(2)確定m的取值范圍,使得g(x)﹣f(x)=0有兩個(gè)相異實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(ax2+bx+c)ex在[0,1]上單調(diào)遞減且滿足f(0)=1,f(1)=0.
(1)求a取值范圍;
(2)設(shè)g(x)=f(x)﹣f′(x),求g(x)在[0,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績(jī)由統(tǒng)一高考的語文、數(shù)學(xué)、外語3個(gè)科目成績(jī)和高中學(xué)業(yè)水平考試3個(gè)科目成績(jī)組成.保持統(tǒng)一高考的語文、數(shù)學(xué)、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機(jī)會(huì).計(jì)入總成績(jī)的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報(bào)考高校要求和自身特長(zhǎng),在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.
(1)某高校某專業(yè)要求選考科目物理,考生若要報(bào)考該校該專業(yè),則有多少種選考科目的選擇;
(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績(jī)達(dá)到二級(jí)的概率都是0.8,且三人約定如果達(dá)到二級(jí)不參加第二次考試,達(dá)不到二級(jí)參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的分別為14,18,則輸出的為( )
A. 0 B. 2 C. 4 D. 14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過定點(diǎn)P(2,1).
(1)求經(jīng)過點(diǎn)P且在兩坐標(biāo)軸上的截距相等的直線方程;
(2)若過點(diǎn)P的直線l與x軸和y軸的正半軸分別交于A,B兩點(diǎn),求△AOB面積的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)若 = ,求證: ≤ + +…+ <1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com