【題目】如圖,有一塊半橢圓形鋼板,其長(zhǎng)半軸為,短半軸為,計(jì)劃將此鋼板切割成等腰梯形的形狀,下底是半橢圓的短軸,上底的端點(diǎn)在橢圓上,記,梯形面積為.
(Ⅰ)求面積關(guān)于變量的函數(shù)表達(dá)式,并寫出定義域;
(Ⅱ)求面積的最大值.
【答案】(I)
,
其定義域?yàn)?/span>
(II)梯形面積的最大值為
【解析】試題分析:(1)建立平面直角坐標(biāo)系,得橢圓標(biāo)準(zhǔn)方程,即滿足的方程:(y≥0),由于,可解得y=2(0<x<r).從而得梯形面積,其中;(2)要求最大值,可先求的最大值,這可由導(dǎo)數(shù)的知識(shí)求得解.
試題解析:(1)依題意,以AB的中點(diǎn)O為原點(diǎn)建立直角坐標(biāo)系(如圖),設(shè)點(diǎn)C的橫坐標(biāo)為x.
點(diǎn)C的縱坐標(biāo)y滿足方程(y≥0),
解得y=2(0<x<r).
S=(2x+2r)2=2(x+r)·,
其定義域?yàn)?/span>{x|0<x<r}.
(2)記f(x)=4(x+r)2(r2-x2),0<x<r,
則f ′(x)=8(x+r)2(r-2x).
令f ′(x)=0,則x=r.因?yàn)楫?dāng)0<x<時(shí),f ′(x)>0;
當(dāng)<x<r時(shí),f ′(x)<0,所以f(r)是f(x)的最大值.
因此,當(dāng)x=r時(shí),S取得最大值,最大值為=r2,即梯形面積S的最大值為r2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(1-x),g(x)=log2(x+1),設(shè)F(x)=f(x)-g(x).
(1)判斷函數(shù)F(x)的奇偶性;
(2)證明函數(shù)F(x)是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使=成立,則稱為的不動(dòng)點(diǎn).
⑴當(dāng)時(shí),求的不動(dòng)點(diǎn);
(2)當(dāng)時(shí),函數(shù)在內(nèi)有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不相同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)
立體幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?
(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯(cuò)的學(xué)生中任意抽取兩人對(duì)他們的答題情況進(jìn)行研究,求恰好抽到男女生各一人的概率.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.
(1)求的值;
(2)求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋中裝有大小相同的球10個(gè),其中紅球8個(gè),黑球2個(gè),現(xiàn)從袋中有放回地取球,每次隨機(jī)取1個(gè).求:
(1)連續(xù)取兩次都是紅球的概率;
(2)如果取出黑球,則取球終止,否則繼續(xù)取球,直到取出黑球,取球次數(shù)最多不超過4次,求取球次數(shù)的概率分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考江蘇卷】現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高的四倍.
(1)若則倉(cāng)庫(kù)的容積是多少?
(2)若正四棱柱的側(cè)棱長(zhǎng)為6m,則當(dāng)為多少時(shí),倉(cāng)庫(kù)的容積最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com