【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽粒,古稱角黍,是端午節(jié)大家都會品嘗的食品.如圖,平行四邊形形狀的紙片是由六個邊長為2的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為_________;若該六面體內(nèi)有一球,當(dāng)該球體積最大時,球的表面積是__________.

【答案】

【解析】

先算出正四面體的體積,六面體的體積是正四面體體積的倍,由圖形的對稱性得,小球的體積要達(dá)到最大,即球與六個面都相切時,求出球的半徑,再代入球的表面積公式可得答案.

該六面體是由兩個全等的正四面體組合而成,正四面體的棱長為2

如圖,在棱長為2的正四面體中,

的中點(diǎn)D,連結(jié),

平面,垂足O上,

,

則該六面體的體積為.

當(dāng)該六面體內(nèi)有一球,且該球的體積取最大值時,

球心為O,且該球與相切,

過球心O,則就是球的半徑,

因?yàn)?/span>,

所以球的半徑,

所以該球的表面積為.

故答案為:,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過點(diǎn),傾斜角為

1)求曲線的直角坐標(biāo)方程與直線l的參數(shù)方程;

2)設(shè)直線與曲線交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是拋物線上的兩個不同的點(diǎn),是坐標(biāo)原點(diǎn).若直線的斜率之積為,則( ).

A.B.為直徑的圓的面積大于

C.直線過定點(diǎn)D.點(diǎn)到直線的距離不大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】法國數(shù)學(xué)家龐加是個喜歡吃面包的人,他每天都會購買一個面包,面包師聲稱自己出售的每個面包的平均質(zhì)量是1000,上下浮動不超過50.這句話用數(shù)學(xué)語言來表達(dá)就是:每個面包的質(zhì)量服從期望為1000,標(biāo)準(zhǔn)差為50的正態(tài)分布.

1)假設(shè)面包師的說法是真實(shí)的,從面包師出售的面包中任取兩個,記取出的兩個面包中質(zhì)量大于1000的個數(shù)為,求的分布列和數(shù)學(xué)期望;

2)作為一個善于思考的數(shù)學(xué)家,龐加萊每天都會將買來的面包稱重并記錄,25天后,得到數(shù)據(jù)如下表,經(jīng)計(jì)算25個面包總質(zhì)量為24468.龐加萊購買的25個面包質(zhì)量的統(tǒng)計(jì)數(shù)據(jù)(單位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

盡管上述數(shù)據(jù)都落在上,但龐加菜還是認(rèn)為面包師撒謊,根據(jù)所附信息,從概率角度說明理由

附:

,從X的取值中隨機(jī)抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,則由統(tǒng)計(jì)學(xué)知識可知:隨機(jī)變量

,則,,

通常把發(fā)生概率在0.05以下的事件稱為小概率事件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙3人站到共有6級的臺階上,若每級臺階最多站2人,同一級臺階上的人不區(qū)分站的位置,則不同的站法總數(shù)是(

A.90B.120C.210D.216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,不正確的是(

A.中,若,則

B.在銳角中,不等式恒成立

C.中,若,,則必是等邊三角形

D.中,若,則必是等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】商家通常依據(jù)樂觀系數(shù)準(zhǔn)則確定商品銷售價格,及根據(jù)商品的最低銷售限價a,最高銷售限價bba)以及常數(shù)x0x1)確定實(shí)際銷售價格c=a+xb﹣a),這里,x被稱為樂觀系數(shù).

經(jīng)驗(yàn)表明,最佳樂觀系數(shù)x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中項(xiàng),據(jù)此可得,最佳樂觀系數(shù)x的值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,底面,分別是、上的點(diǎn),且平面

(Ⅰ)求證:的中點(diǎn);

(Ⅱ)當(dāng)與平面所成的角最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列判斷正確的是(

A.函數(shù)的最小正周期為,在上單調(diào)遞增

B.函數(shù)的最小正周期為,在上單調(diào)遞增

C.函數(shù)的最小正周期為,在上單調(diào)遞增

D.函數(shù)的最小正周期為,在上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案