已知橢圓:的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)(點(diǎn)在第一象限).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知為橢圓的左頂點(diǎn),平行于的直線與橢圓相交于兩點(diǎn).判斷直線是否關(guān)于直線對稱,并說明理由.
(Ⅰ)(Ⅱ)對稱
解析試題分析:(Ⅰ)由圓方程可知圓心為,即,又因為離心率為,可得,根據(jù)橢圓中關(guān)系式,可求。橢圓方程即可求出。因為,則右頂點(diǎn)為,將其代入圓的方程可求半徑。(Ⅱ)由橢圓方程可知,將代入橢圓方程可得?傻,設(shè)直線,然后和橢圓方程聯(lián)立,消掉y(或x)得到關(guān)于x的一元二次方程。再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系?傻脙芍本的斜率。當(dāng)直線是否關(guān)于直線對稱時兩直線傾斜角互補(bǔ),所以斜率互為相反數(shù)。把求得的兩直線斜率相加若為0,則說明兩直線對稱。否則不對稱。
試題解析:(Ⅰ)由題意得, 1分
由可得, 2分
所以, 3分
所以橢圓的方程為. 4分
(Ⅱ)由題意可得點(diǎn), 6分
所以由題意可設(shè)直線,. 7分
設(shè),
由得.
由題意可得,即且. 8分
. 9分
因為 10分
, 13分
所以直線關(guān)于直線對稱. 14分
考點(diǎn):橢圓的基礎(chǔ)知識、直線與橢圓的位置關(guān)系,考查分析問題、解決問題以及化歸與轉(zhuǎn)化的能力,考查綜合素質(zhì)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線上的兩個點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為k, 為坐標(biāo)原點(diǎn).
(Ⅰ)若拋物線的焦點(diǎn)在直線的下方,求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓經(jīng)過點(diǎn),離心率為.
(1)求橢圓C的方程:
(2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓E:的兩個焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,
(Ⅰ)求橢圓E的方程;
(Ⅱ)如圖,過點(diǎn)的動直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù),直線與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(diǎn)(―1,―1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右兩焦點(diǎn)分別為,是橢圓上一點(diǎn),且在軸上方,.
(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準(zhǔn)線上任一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.試探究直線是否過定點(diǎn)?若過定點(diǎn),請求出該定點(diǎn);否則,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com