【題目】根據(jù)下列條件,分別求拋物線的標(biāo)準(zhǔn)方程:

(1)拋物線的焦點(diǎn)是雙曲線16x2-9y2=144的左頂點(diǎn);

(2)拋物線的焦點(diǎn)Fx軸上,直線y=-3與拋物線交于點(diǎn)A,AF=5.

【答案】(1)y2=-12x.(2)y2=±2xy2=±18x.

【解析】試題分析:(1)先將雙曲線方程化為標(biāo)準(zhǔn)方程,根據(jù)方程可得左頂點(diǎn),即得拋物線焦點(diǎn),根據(jù)焦點(diǎn)坐標(biāo)直接寫出拋物線標(biāo)準(zhǔn)方程(2)根據(jù)焦點(diǎn)位置可設(shè)拋物線標(biāo)準(zhǔn)方程形式,設(shè)A點(diǎn)坐標(biāo),根據(jù)拋物線定義以及點(diǎn)在拋物線上列方程組解得p,即得拋物線方程

試題解析:解:(1)雙曲線方程化為=1,左頂點(diǎn)為(-3,0),由題意設(shè)拋物線方程為y2=-2px(p>0),且=-3,∴p=6,∴方程為y2=-12x.

(2)設(shè)所求焦點(diǎn)在x軸上的拋物線的方程為

y2=2px(p≠0),A(m,-3),

由拋物線定義,得5=AF.

又(-3)2=2pm,∴p=±1或p=±9,

故所求拋物線方程為y2=±2xy2=±18x.

點(diǎn)睛; 待定系數(shù)法求拋物線的標(biāo)準(zhǔn)方程

(1)根據(jù)拋物線焦點(diǎn)是在x軸上還是在y軸上,設(shè)出相應(yīng)形式的標(biāo)準(zhǔn)方程,然后根據(jù)條件確定關(guān)于p的方程,解出p,從而寫出拋物線的標(biāo)準(zhǔn)方程.

(2)當(dāng)焦點(diǎn)位置不確定時(shí),有兩種方法解決.一種是分情況討論,注意要對(duì)四種形式的標(biāo)準(zhǔn)方程進(jìn)行討論,對(duì)于焦點(diǎn)在x軸上的拋物線,為避免開(kāi)口方向不確定可分為y2=2px(p>0)和y2=-2px(p>0)兩種情況求解.另一種是設(shè)成y2=mx(m≠0),若m>0,開(kāi)口向右;若m<0,開(kāi)口向左;若m有兩個(gè)解,則拋物線的標(biāo)準(zhǔn)方程有兩個(gè).同理,焦點(diǎn)在y軸上的拋物線可以設(shè)成x2=my(m≠0).如果不確定焦點(diǎn)所在的坐標(biāo)軸,應(yīng)考慮上述兩種情況設(shè)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】8人排成一排照相,分別求下列條件下的不同照相方式的種數(shù).

(1)其中甲、乙相鄰,丙、丁相鄰;

(2)其中甲、乙不相鄰,丙、丁不相鄰;

(要求寫出解答過(guò)程,并用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn) 和一動(dòng)點(diǎn),給出下列結(jié)論:

①若,則點(diǎn)的軌跡是橢圓;

②若,則點(diǎn)的軌跡是雙曲線;

③若,則點(diǎn)的軌跡是圓;

④若,則點(diǎn)的軌跡關(guān)于原點(diǎn)對(duì)稱;

⑤若直線斜率之積等于,則點(diǎn)的軌跡是橢圓(除長(zhǎng)軸兩端點(diǎn)).

其中正確的是__________(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列命題的真假,并說(shuō)明理由.

(1)x∈R,都有x2x+1>;

(2)αβ,使cos(αβ)=cos α-cos β

(3)x,y∈N,都有(xy)∈N;

(4)x,y∈Z,使xy=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在實(shí)數(shù)集上的圖象是連續(xù)不斷的,且對(duì)任意實(shí)數(shù)存在常數(shù)使得恒成立,則稱是一個(gè)“關(guān)于函數(shù)”.現(xiàn)有下列“關(guān)于函數(shù)”的結(jié)論:

①常數(shù)函數(shù)是“關(guān)于函數(shù)”;

②正比例函數(shù)必是一個(gè)“關(guān)于函數(shù)”;

③“關(guān)于函數(shù)”至少有一個(gè)零點(diǎn);

是一個(gè)“關(guān)于函數(shù)”.

其中正確結(jié)論的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的解析式;

(2)設(shè),證明:函數(shù)圖象上任一點(diǎn)處的切線與兩坐標(biāo)軸所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ﹣ )=
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【廣西南寧2017屆高三檢測(cè)】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購(gòu)物者的年齡情況如圖.

(1)已知、,三個(gè)年齡段的上網(wǎng)購(gòu)物者人數(shù)成等差數(shù)列,求的值;

(2)該電子商務(wù)平臺(tái)將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券,已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)物者中抽取了10人,現(xiàn)在要在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={1,2,3},集合B={x|a+1<x<6a﹣1},其中a∈R.
(1)寫出集合A的所有真子集;
(2)若A∩B={3},求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案