【題目】已知點,分別在軸,軸上運動,,點在線段上,且.
(1)求點的軌跡的方程;
(2)直線與交于,兩點,,若直線,的斜率之和為2,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.
【答案】(1)(2)直線恒過定點
【解析】
(1)設(shè),由此得出兩點的坐標,根據(jù)列方程,化簡后求得點的軌跡方程.
(2)設(shè),,當直線斜率存在時,設(shè)直線的方程為,聯(lián)立直線方程和軌跡的方程,寫出判別式和韋達定理,根據(jù)直線,的斜率之和為2列方程,求得的關(guān)系式,由此判斷直線過點.當直線斜率不存在時,同樣利用直線,的斜率之和為2列方程,由此求得直線的方程,此時直線也過點,由此判斷出直線恒過定點.
(1)設(shè),
因為點在線段上,且,所以,,
因為,所以,即,
所以點的軌跡的方程為.
(2)設(shè),,
當的斜率存在時,設(shè):,
由得,
所以,即,
,,
因為直線,的斜率之和為2,所以,
所以,即,所以,
當時,滿足,即,符合題意,
此時:恒過定點,
當的斜率不存在時,,,
因為直線,的斜率之和為2,所以,
所以,此時:,恒過定點,
綜上,直線恒過定點.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了更好地支持“中小型企業(yè)”的發(fā)展,某市決定對部分企業(yè)的稅收進行適當?shù)臏p免,某機構(gòu)調(diào)查了當?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個結(jié)論:
①樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;
②如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計有55%的當?shù)刂行⌒推髽I(yè)能享受到減免稅政策;
③樣本的中位數(shù)為480萬元.
其中正確結(jié)論的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為2的等邊中,分別為邊的中點,將AED沿折起,使得 , ,得到如圖2的四棱錐A-BCDE,連結(jié),且與交于點.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列說法:①“”是“”的充分不必要條件;②命題“,”的否定是“,”;③小趙、小錢、小孫、小李到4個景點旅游,每人只去一個景點,設(shè)事件為“4個人去的景點不相同”,事件為“小趙獨自去一個景點”,則;④設(shè),其正態(tài)分布密度曲線如圖所示,那么向正方形中隨機投擲10000個點,則落入陰影部分的點的個數(shù)的估計值是6587.(注:若,則,)其中正確說法的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為橢圓的右焦點,C的準線與E交于P,Q兩點,且.
(1)求E的方程;
(2)過E的左頂點A作直線l交E于另一點B,且BO(O為坐標原點)的延長線交E于點M,若直線AM的斜率為1,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x+1)2,令f1(x)=f'(x),fn+1(x)=fn'(x),若fn(x)=ex(anx2+bnx+cn),記數(shù)列{}的前n項和為Sn,則下列選項中與S2019的值最接近的是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com