已知函數(shù)f(x)=ax2+bx+c和函數(shù)g(x)=ln(1+x2)+ax(a<0).
(Ⅰ)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)已知關(guān)于x的方程f(x)=x沒有實(shí)數(shù)根,求證方程f(f(x))=x也沒有實(shí)數(shù)根;
(Ⅲ)證明:
(Ⅰ)解:
①當(dāng),即a≤﹣1時(shí),g′(x)≤0對x∈R恒成立,∴g(x)在(﹣∞,+∞)上單調(diào)遞減;
②當(dāng)﹣1<a<0時(shí),令g′(x)>0,則ax2+2x+a>0
,
令g′(x)<0,則ax2+2x+a<0
,
上單調(diào)遞增,在上單調(diào)遞減;  
綜上所述,當(dāng)a≤﹣1時(shí),g(x)在(﹣∞,+∞)上單調(diào)遞減,
當(dāng)﹣1<a<0時(shí),g(x)在上單調(diào)遞增,
上單調(diào)遞減.
(Ⅱ)證明:∵關(guān)于x的方程f(x)=x沒有實(shí)數(shù)根
∴ax2+bx+c=x沒有實(shí)數(shù)根
∴ax2+(b﹣1)x+c=0沒有實(shí)數(shù)根
∴△=(b﹣1)2﹣4ac<0
∵f(f(x))=x
∴a(ax2+bx+c)2+b(ax2+bx+c)+c=x
∴[ax2+(b﹣1)x+c][a2x2+a(b+1)x+b+ac+1]=0
∵ax2+(b﹣1)x+c≠0
∴a2x2+a(b+1)x+b+ac+1=0
∵△=a2(b+1)2﹣4a2(b+ac+1)=a2[(b+1)2﹣4(b+ac+1)]=a2[(b﹣1)2﹣4ac﹣4]<0
∴a2x2+a(b+1)x+b+ac+1=0無實(shí)根
∴方程f(f(x))=x也沒有實(shí)數(shù)根;
(Ⅲ)證明:由(Ⅰ)知,當(dāng)a=﹣1時(shí),g(x)在(﹣∞,+∞)上單調(diào)遞減,
當(dāng)x∈(0,+∞)時(shí),由g(x)<g(0)=0
得:ln(1+x2)<x,

           =lne,
e
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案