(1)用反證法證明:在一個三角形中,至少有一個內(nèi)角大于或等于;
(2)已知,試用分析法證明:.

(1)見解析;(2)見解析

解析試題分析:
(1)反證法證明問題的關鍵是:提出結論的反面,并以此為條件推導導出矛盾;(2)分析法要求由結論成立反推條件(由果索因).
試題解析:
(1)假設在一個三角形中,沒有一個內(nèi)角大于或等于
即均小于                                   2分
則三內(nèi)角和小于,                          4分
這與三角形中三個內(nèi)角和等于矛盾,
故假設不成立,原命題成立;                     6分
(2)要證上式成立,需證
需證                      8分
需證
需證
需證                            10分
只需證
因為顯然成立,所以原命題成立.                  12分
考點:(1)反證法;(2)分析法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

若點內(nèi),則有結論 ,把命題類比推廣到空間,若點在四面體內(nèi),則有結論:              

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含個小正方形.

(Ⅰ)求出;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出的關系式,
(Ⅲ)根據(jù)你得到的關系式求的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,試證明至少有一個不小于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是一個自然數(shù),的各位數(shù)字的平方和,定義數(shù)列是自然數(shù),,).
(1)求;
(2)若,求證:;
(3)當時,求證:存在,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是否存在常數(shù)a,b使等式對于一切n∈N*都成立?若存在,求出a,b的值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在平面幾何里有射影定理:“設△ABC的兩邊,D是A點在BC邊上的射影,則.”。拓展到空間,若三棱錐A-BCD的三個側面ABC、ACD、ADB兩兩互相垂直,點O是頂點A在底面BCD上的射影且O點在△BCD內(nèi),類比平面上三角形的射影定理,△ABC、△BOC、△BCD三者的面積關系是                      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

猜想1="1," 1-4 =" -" (1+2), 1-4+9 =" 1+2+3,……" 的第n個式子為       。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

平面上有n(n≥2)個圓,其中每兩個圓都相交于兩點,任何三個圓無公共點.這n個圓將平面分成塊區(qū)域,可數(shù)得,則的表達式為      

查看答案和解析>>

同步練習冊答案