如圖,在矩形中,,的中點,以為折痕將向上折起,使 為,且平面平面 

(Ⅰ)求證:
(Ⅱ)求二面角的大小
解:如圖所示,

(Ⅰ)證明:因為,所以,即,…2分
中點,連結(jié),則,
又平面平面,可得平面,即得,…………5分
從而平面,故 ……………………7分
(Ⅱ)如圖建立空間直角坐標(biāo)系,則、、,從而,!9分
設(shè)為平面的法向量,
可以取 ……………………11分
設(shè)為平面的法向量,
可以取 ……………………13分
因此,,有,即平面平面
故二面角的大小為。……………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在斜邊為AB的Rt△ABC,過A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.

(1)求證:BC⊥平面PAC.
(2)求證:PB⊥平面AEF.
(3)若AP=AB=2,試用tgθ(∠BPC=θ)表示△AEF的面積、當(dāng)tgθ取何值時,△AEF的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、(本題12分)在正方體,
求證:(1)對角線⊥平面。
(2)與平面的交點H是的外心。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
若圖為一簡單組合體,其底面ABCD為正方形,PD平面ABCD,EC//PD,且PD=2EC。

(1)求證:BE//平面PDA;
(2)若N為線段PB的中點,求證:EN平面PDB;
(3)若,求平面PBE與平面ABCD所成的二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在如圖所示的幾何體中,平面,的中點,
,
(Ⅰ)證明平面
(Ⅱ)求二面角的余弦值.

圖7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、、是半徑為的球面上的四點,且滿足,,,則的最大值是         (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本題滿分13分)
如圖,在三棱柱中,,頂點在底面上的射影恰為點B,且

(1)求棱BC所成的角的大。
(2)在線段上確定一點P,使,并求出二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 如圖,已知正方體的棱長為2,點分別為的中點.

(Ⅰ)求異面直線CM所成角的余弦值;
(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如右圖1,在四棱錐中,底面是正方形,中點,若,,(  )

A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案