【題目】已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成的銳二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)構(gòu)造直線所在平面,由面面平行推證線面平行;
(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.
(1)過(guò)點(diǎn)交于點(diǎn),連接,如下圖所示:
因?yàn)槠矫?/span>平面,且交線為,
又四邊形為正方形,故可得,
故可得平面,又平面,
故可得.
在三角形中,因?yàn)?/span>為中點(diǎn),,
故可得//,為中點(diǎn);
又因?yàn)樗倪呅?/span>為等腰梯形,是的中點(diǎn),
故可得//;
又,
且平面,平面,
故面面,
又因?yàn)?/span>平面,
故面.即證.
(2)連接,,作交于點(diǎn),
由(1)可知平面,又因?yàn)?/span>//,故可得平面,
則;
又因?yàn)?/span>//,,故可得
即,,兩兩垂直,
則分別以,,為,,軸建立空間直角坐標(biāo)系,
則,
,,,
,,
設(shè)面的法向量為,則,,
則,
可取,
設(shè)平面的法向量為,則,,
則,
可取,
可知平面與平面所成的銳二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三(1)班在一次語(yǔ)文測(cè)試結(jié)束后,發(fā)現(xiàn)同學(xué)們?cè)诒痴b內(nèi)容方面失分較為嚴(yán)重.為了提升背誦效果,班主任倡議大家在早、晚讀時(shí)間站起來(lái)大聲誦讀,為了解同學(xué)們對(duì)站起來(lái)大聲誦讀的態(tài)度,對(duì)全班50名同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果進(jìn)行整理后制成下表:
考試分?jǐn)?shù) | ||||||
頻數(shù) | 5 | 10 | 15 | 5 | 10 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使測(cè)試優(yōu)秀率為30%,則優(yōu)秀分?jǐn)?shù)線應(yīng)定為多少分?
(2)依據(jù)第1問(wèn)的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來(lái)大聲誦讀的態(tài)度與考試成績(jī)是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為贊成與否的態(tài)度與成績(jī)是否優(yōu)秀有關(guān)系.
參考公式及數(shù)據(jù):,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為生產(chǎn)一種標(biāo)準(zhǔn)長(zhǎng)度為的精密器件,研發(fā)了一臺(tái)生產(chǎn)該精密器件的車床,該精密器件的實(shí)際長(zhǎng)度為,“長(zhǎng)度誤差”為,只要“長(zhǎng)度誤差”不超過(guò)就認(rèn)為合格.已知這臺(tái)車床分晝、夜兩個(gè)獨(dú)立批次生產(chǎn),每天每批次各生產(chǎn)件.已知每件產(chǎn)品的成本為元,每件合格品的利潤(rùn)為元.在晝、夜兩個(gè)批次生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取件,檢測(cè)其長(zhǎng)度并繪制了如下莖葉圖:
(1)分別估計(jì)在晝、夜兩個(gè)批次的產(chǎn)品中隨機(jī)抽取一件產(chǎn)品為合格品的概率;
(2)以上述樣本的頻率作為概率,求這臺(tái)車床一天的總利潤(rùn)的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩坐標(biāo)軸的距離之和等于它到定點(diǎn)的距離,記點(diǎn)的軌跡為.給出下面四個(gè)結(jié)論:①曲線關(guān)于原點(diǎn)對(duì)稱;②曲線關(guān)于直線對(duì)稱;③點(diǎn)在曲線上;④在第一象限內(nèi),曲線與軸的非負(fù)半軸、軸的非負(fù)半軸圍成的封閉圖形的面積小于.其中所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接2019年的高考,某學(xué)校進(jìn)行了第一次模擬考試,其中五個(gè)班的考試成績(jī)?cè)?/span>500分以上的人數(shù)如下表,為班級(jí),表示500分以上的人數(shù)
1 | 2 | 3 | 4 | 5 | |
20 | 25 | 30 | 30 | 25 |
(1)若給出數(shù)據(jù),班級(jí)與考試成績(jī)500以上的人數(shù),滿足回歸直線方程,求出該回歸直線方程;
(2)學(xué)校為了更好的提高學(xué)生的成績(jī),了解一模的考試成績(jī),從考試成績(jī)?cè)?/span>500分以上1,3班學(xué)生中,利用分層抽樣抽取5人進(jìn)行調(diào)研,再?gòu)倪x中的5人中,再選3名學(xué)生寫(xiě)出“經(jīng)驗(yàn)介紹”文章,則選的三名學(xué)生1班一名,3班2名的概率.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)為,,離心率為,點(diǎn)P為橢圓C上一動(dòng)點(diǎn),且的面積最大值為,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)點(diǎn),為橢圓C上的兩個(gè)動(dòng)點(diǎn),當(dāng)為多少時(shí),點(diǎn)O到直線MN的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,焦距為2,且經(jīng)過(guò)點(diǎn),斜率為的直線經(jīng)過(guò)點(diǎn),與橢圓交于,兩點(diǎn).
(1)求橢圓的方程;
(2)在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與拋物線:交于,兩點(diǎn),且的面積為16(為坐標(biāo)原點(diǎn)).
(1)求的方程;
(2)直線經(jīng)過(guò)的焦點(diǎn)且不與軸垂直,與交于,兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),證明:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com