已知公差不為零的等差數(shù)列{an}的前5項(xiàng)和為30,且a2為a1和a4的等比中項(xiàng).
(1)求{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)若數(shù)列{bn}滿足
bn+1
bn
=
Sn
n
(n∈N*),且b1=1,求數(shù)列{
n
bn+1
}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)根據(jù)條件建立方程關(guān)系求出等差數(shù)列的首項(xiàng)和公差,即可求{an}的通項(xiàng)公式an及前n項(xiàng)和Sn
(2)求出數(shù)列{bn}的通項(xiàng)公式,利用裂項(xiàng)法即可求出數(shù)列的和.
解答: 解:(1)設(shè)公差為d(d≠0),則
5a1+10d=30
(a1+d)2=a1(a1+3d)
a1=2
d=2
,
∴an=2n,Sn=n(n+1);
(2)由(1)
bn+1
bn
=
Sn
n
=n+1,
當(dāng)n≥2時(shí),
bn
b1
=
b2
b1
?
b3
b2
???
bn
bn-1
=2?3?4???n=n!
,
則bn=n!,則
n
bn+1
=
n
(n+1)!
=
n+1-1
(n+1)!
=
1
n!
-
1
(n+1)!
,
∴數(shù)列{
n
bn+1
}的前n項(xiàng)和Tn=(
1
1!
-
1
2!
)+(
1
2!
-
1
3!
)+(
1
3!
-
1
4!
)+???+(
1
n!
-
1
(n+1)!
)=1-
1
(n+1)!
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和的計(jì)算,以及利用裂項(xiàng)法進(jìn)行求和,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高二年級(jí)文科共303名學(xué)生,為了調(diào)查情況,學(xué)校決定隨機(jī)抽取50人參加抽測(cè),采取先簡(jiǎn)單隨機(jī)抽樣去掉3人然后系統(tǒng)抽樣抽取出50人的方式進(jìn)行.則在此抽樣方式下,某學(xué)生甲被抽中的概率為( 。
A、
1
6
B、
1
100
C、
1
75
D、
50
303

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-x-1,g(x)=x2eax
(Ⅰ)求f(x)的最小值;
(Ⅱ)求g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=1時(shí),對(duì)于在(0,1)中的任一個(gè)常數(shù)m,是否存在正數(shù)x0使得f(x0)>
m
2
g(x)成立?如果存在,求出符合條件的一個(gè)x0;否則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在圖的幾何體中,面ABC∥面DEFG,∠BAC=∠EDG=120°,四邊形ABED是矩形,四邊形ADGC是直角梯形,∠ADG=90°,四邊形DEFG是梯形,EF∥DG,AB=AC=AD=EF=1,DG=2.
(1)求證:FG⊥面ADF;
(2)求四面體CDFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a=1,b=
3
,B=2A.
(1)求cosA的值;
(2)求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn,an,
1
2
成等差數(shù)列.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若bn=log2an+3,求數(shù)列{
1
bnbn+1
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=aex+b,g(x)=ax2-2x-2(其中a,b∈R,a≠0),設(shè)函數(shù)F(x)=f(x)•g(x).
(Ⅰ)若函數(shù)f(x)在x=0處的切線方程為y=x+1,解關(guān)于x的不等式F(x)>0;
(Ⅱ)當(dāng)a>0,b=0時(shí),求函數(shù)F(cos2x)的最小值;
(Ⅲ)在(Ⅰ)的條件下,是否存在區(qū)間[m,n](m>2),使得函數(shù)F(x)在[m,n]上的值域是[
m
2
,
n
2
]?試著說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,菱形OABC的兩個(gè)頂點(diǎn)為O(0,0),A(1,1),且
OA
OC
=1,則
AB
AC
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O,A,B是平面上三個(gè)不同點(diǎn),動(dòng)點(diǎn)P滿足|
PA
|=|
PB
|,且|
OA
|=3,|
OB
|=1,則
OP
•(
OA
-
OB
)的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案