【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn)。某運營公司為了了解某地區(qū)用戶對其所提供的服務的滿意度,隨機調(diào)查了40個用戶,得到用戶的滿意度評分如下:

用戶編號

評分

用戶編號

評分

用戶編號

評分

用戶編號

評分

1

2

3

4

5

6

7

8

9

10

78

73

81

92

95

85

79

84

63

86

11

12

13

14

15

16

17

18

19

20

88

86

95

76

97

78

88

82

76

89

21

22

23

24

25

26

27

28

29

30

79

83

72

74

91

66

80

83

74

82

31

32

33

34

35

36

37

38

39

40

93

78

75

81

84

77

81

76

85

89

用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機抽到的評分數(shù)據(jù)為92.

(1)請你列出抽到的10個樣本的評分數(shù)據(jù);

(2)計算所抽到的10個樣本的均值和方差

(3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為“級”。試應用樣本估計總體的思想,根據(jù)所抽到的10個樣本,估計該地區(qū)滿意度等級為“級”的用戶所占的百分比是多少?

(參考數(shù)據(jù):

【答案】(1)見解析;(2)均值,方差(3)

【解析】

1)根據(jù)題意,由表格分析可得通過系統(tǒng)抽樣分別抽取編號,據(jù)此可得樣本的評分數(shù)據(jù);

2)根據(jù)題意,由平均數(shù)和方差公式計算可得答案;

3)根據(jù)題意,分析評分在,即(77.26,88.74)之間的人數(shù),進而計算進而可得答案.

(1)通過系統(tǒng)抽樣抽取的樣本編號為:4,8,12,16,20,24,28,32,36,40

則樣本的評分數(shù)據(jù)為:92,84,86,78,89,74,83,78,77,89.

(2)由(1)中的樣本評分數(shù)據(jù)可得

則有

所以均值,方差.

(3)由題意知評分在之間滿意度等級為“A級”,

由(1)中容量為10的樣本評分在之間有5人,

則該地區(qū)滿意度等級為“A級”的用戶所占的百分比約為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點為頂點作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標原點)?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

設函數(shù).

(Ⅰ)求的最小值及取得最小值時的取值范圍;

(Ⅱ)若集合,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從境外回國的8位同胞中有1位被新冠肺炎病毒感染,需要通過核酸檢測是否呈陽性來確定是否被感染.下面是兩種檢測方案:

方案一:逐個檢測,直到能確定被感染者為止.

方案二:將8位同胞平均分為2組,將每組成員的核酸混合在一起后隨機抽取一組進行檢測,若檢測呈陽性,則表明被感染者在這4位當中,然后逐個檢測,直到確定被感染者為止;若檢測呈陰性,則在另外一組中逐個進行檢測,直到確定被感染者為止.

1)根據(jù)方案一,求檢測次數(shù)不多于兩次的概率;

2)若每次核酸檢測費用都是100元,設方案二所需檢測費用為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=sinx++sinx-+2cos2ωx,其中ω0,且函數(shù)fx)的最小正周期為π

1)求ω的值;

2)求fx)的單調(diào)增區(qū)間

3)若函數(shù)gx=fx-a在區(qū)間[-]上有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題是否正確,請說明理由:

1)若向量 同向,且,則

2)若向,則的長度相等且方向相同或相反;

3)對于任意向量,若的方向相同,則 =

4)由于 方向不確定,故 不與任意向量平行;

5)向量平行,則向量方向相同或相反.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高中生在被問及家,朋友聚集的地方,個人空間三個場所中感到最幸福的場所在哪里?這個問題時,從中國某城市的高中生中,隨機抽取了55人,從美國某城市的高中生中隨機抽取了45人進行答題.中國高中生答題情況是:選擇家的占、朋友聚集的地方占個人空間占.美國高中生答題情況是朋友聚集的地方占、家占個人空間占.如下表

在家里最幸福

在其它場所幸福

合計

中國高中生

美國高中生

合計

(Ⅰ)請將列聯(lián)表補充完整;試判斷能否有的把握認為戀家與否與國別有關;

(Ⅱ)從被調(diào)查的不戀家的美國學生中,用分層抽樣的方法選出4人接受進一步調(diào)查,再從4人中隨機抽取2人到中國交流學習,求2人中含有在個人空間感到幸福的學生的概率.

,其中.

0.050

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知點是曲線上的動點,求點到曲線的最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,四邊形是菱形,四邊形是正方形,,,點的中點.

(1)求證:平面;

(2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案