18.已知函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x>1\\{2^{-x+1}},x≤1\end{array}\right.$,若方程$f(x)-ax=\frac{5}{2}$有3個不同的解,則a的取值范圍是( 。
A.$(-∞,-\frac{5}{2}]$B.$(-\frac{5}{2},-\frac{3}{2}]$C.$[-\frac{5}{2},-\frac{3}{2}]$D.$(-\frac{3}{2},+∞)$

分析 方程$f(x)-ax=\frac{5}{2}$有3個不同的解,即$f(x)=ax+\frac{5}{2}$有3個不同的解,等價于y=f(x)與$y=ax+\frac{5}{2}$的圖象有3個不同的交點,因為直線$y=ax+\frac{5}{2}$恒過$({0,\;\;\frac{5}{2}})$,所以滿足條件的直線應在圖中的l1與l2之間,求出斜率,即可得出結論.

解答 解:f(x)的圖象如圖所示,方程$f(x)-ax=\frac{5}{2}$有3個不同的解,即$f(x)=ax+\frac{5}{2}$有3個不同的解,
等價于y=f(x)與$y=ax+\frac{5}{2}$的圖象有3個不同的交點,
因為直線$y=ax+\frac{5}{2}$恒過$({0,\;\;\frac{5}{2}})$,
所以滿足條件的直線應在圖中的l1與l2之間,斜率分別是${k_1}=\frac{{\frac{5}{2}-1}}{0-1}=-\frac{3}{2}$,${k_2}=\frac{{\frac{5}{2}-0}}{0-1}=-\frac{5}{2}$,故$a∈({-\frac{5}{2},\;\;-\frac{3}{2}}]$,
故選B.

點評 本題考查方程解的研究,考查數(shù)形結合的數(shù)學思想,考查學生分析解決問題的能力,正確轉化是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,$BC=EF=\frac{1}{2}AB$,∠BAD=60°,G為BC的中點.
(Ⅰ)求證:FG∥平面BED;
(Ⅱ)求證:平面BED⊥平面AED.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知正數(shù)a,b,c滿足4a-2b+25c=0,則lga+lgc-2lgb的最大值為( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥-1\\ x-y≥1\\ x-2y+1≤0\end{array}\right.$,則x+y的最小值是5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖1,一個多面體的正視圖和側視圖是兩個全等的等腰直角三角形且直角邊長為2,俯視圖是邊長為2的正方形,則該多面體的表面積是( 。
A.$2+4\sqrt{2}+2\sqrt{3}$B.$2+4\sqrt{2}+\sqrt{6}$C.$2+4\sqrt{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某中學高三年級有400名學生參加月考,用簡單隨機抽樣的方法抽取了一個容量為50的樣本,得到數(shù)學成績的頻率分布直方圖如圖所示.
(1)求第四個小矩形的高;
(2)估計本校在這次統(tǒng)測中數(shù)學成績不低于120分的人數(shù);
(3)已知樣本中,成績在[140,150]內(nèi)的有兩名女生,現(xiàn)從成績在這個分數(shù)段的學生中隨機選取2人做學習交流,求恰好男生女生各有一名的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)$f(x)=sin(\frac{π}{2}-x)$是( 。
A.奇函數(shù),且在區(qū)間$(0,\frac{π}{2})$上單調(diào)遞增B.奇函數(shù),且在區(qū)間$(0,\frac{π}{2})$上單調(diào)遞減
C.偶函數(shù),且在區(qū)間$(0,\frac{π}{2})$上單調(diào)遞增D.偶函數(shù),且在區(qū)間$(0,\frac{π}{2})$上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)$f(x)=[{\frac{x+1}{2}}]-[{\frac{x}{2}}](x∈N)$的值域為{0,1}.(其中[x]表示不大于x的最大整數(shù),例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1、F2是其左、右焦點,A是其上頂點,且∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)經(jīng)過橢圓C的右焦點F2作傾斜角為45°的直線l,交橢圓C于M,N兩點,且滿足$\overrightarrow{M{F}_{1}}•\overrightarrow{N{F}_{1}}$=-2,求橢圓C的方程.

查看答案和解析>>

同步練習冊答案