13.如圖1,一個多面體的正視圖和側(cè)視圖是兩個全等的等腰直角三角形且直角邊長為2,俯視圖是邊長為2的正方形,則該多面體的表面積是( 。
A.$2+4\sqrt{2}+2\sqrt{3}$B.$2+4\sqrt{2}+\sqrt{6}$C.$2+4\sqrt{2}$D.$\frac{4}{3}$

分析 畫出幾何體的直觀圖,分析出各個面的形狀,求出各個面的面積后,相加可得答案.

解答 解:該多面體為一個三棱錐D-ABC,
如圖1所示,
其中3個面是直角三角形,1個面是等邊三角形,
S表面積=S△ABC+S△ABD+S△ACD+S△BCD=$\frac{1}{2}×2×2+\frac{1}{2}×2×2\sqrt{2}+\frac{1}{2}×2×2\sqrt{2}+\frac{1}{2}×2\sqrt{2}×2\sqrt{2}sin60°$=$2+4\sqrt{2}+2\sqrt{3}$,
故選A.

點評 本題考查的知識點是棱錐的表面積和體積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線m,n和平面α,下列推理正確的是( 。
A.$\left.{\begin{array}{l}{m⊥n}\\{n?α}\end{array}}\right\}⇒m⊥α$B.$\left.{\begin{array}{l}{m⊥n}\\{n⊥α}\end{array}}\right\}⇒m∥α$C.$\left.{\begin{array}{l}{m⊥α}\\{n∥α}\end{array}}\right\}⇒m⊥n$D.$\left.{\begin{array}{l}{m∥α}\\{n?α}\end{array}}\right\}⇒m∥n$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)$f(x)=\sqrt{x-1}$,則$f(\frac{x}{2})+f(\frac{4}{x})$的定義域為( 。
A.$[\frac{1}{2},4]$B.[2,4]C.[1,+∞)D.[$\frac{1}{4}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)雙曲線$\frac{x^2}{4}-{y^2}=1$上的點P到點$(\sqrt{5},0)$的距離為5,則P到點$(-\sqrt{5},0)$的距離為( 。
A.1B.9C.1或9D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合A={x|x≤-4或x≥2},B={x||x-1|≤3},則等于∁R(A∩B)( 。
A.[2,4]B.[-2,2)C.(-∞,2)∪(4,+∞)D.(-∞,-4)∪(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x>1\\{2^{-x+1}},x≤1\end{array}\right.$,若方程$f(x)-ax=\frac{5}{2}$有3個不同的解,則a的取值范圍是( 。
A.$(-∞,-\frac{5}{2}]$B.$(-\frac{5}{2},-\frac{3}{2}]$C.$[-\frac{5}{2},-\frac{3}{2}]$D.$(-\frac{3}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=b{x^3}-\frac{3}{2}(2b+1){x^2}+6x+a(b>0)$.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)b=1,若方程f(x)=0有且只有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=cosx•cos(x-\frac{π}{3})$.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若直線y=a與函數(shù)f(x)的圖象無公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+bx+c
(1)若f(x)在(-∞,+∞)上是增函數(shù),求b的取值范圍
(2)若f(x)在x=1處取得極值,且x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案