【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:
先由命題解得;命題得,
(1)當,得命題,再由為真,得真且真,即可求解的取值范圍.
(2)由是的充分不必要條件,則是的充分必要條件,根據(jù)則 ,即可求解實數(shù)的取值范圍.
試題解析:
命題:由題得,又,解得;
命題: ,解得.
(1)若,命題為真時, ,
當為真,則真且真,
∴解得的取值范圍是.
(2)是的充分不必要條件,則是的充分必要條件,
設, ,則 ;
∴∴實數(shù)的取值范圍是.
【題型】解答題
【結束】
19
【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點、,且中點橫坐標為2,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】學校從參加高一年級期中考試的學生中抽出名學生,并統(tǒng)計了她們的數(shù)學成績(成績均為整數(shù)且滿分為分),數(shù)學成績分組及各組頻數(shù)如下:
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
合計 |
(1)在給出的樣本頻率分布表中,求的值;
(2)估計成績在分以上(含分)學生的比例;
(3)為了幫助成績差的學生提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在中的某一位同學.已知甲同學的成績?yōu)?/span>分,乙同學的成績?yōu)?/span>分,求甲、乙兩同學恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,棱長為2的正方體ABCD-A1B1C1D1中,E、F分別是DD1、DB的中點,求證:
(1)EF∥平面ABC1D1;
(2)EF⊥B1C
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經(jīng)濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2018年種植的一批試驗紫甘薯在不同溫度時6組死亡的株數(shù):
溫度(單位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡數(shù)(單位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計算:,,,.
其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù),.
(1)與是否有較強的線性相關性? 請計算相關系數(shù)(精確到)說明.
(2)并求關于的回歸方程(和都精確到);
(3)用(2)中的線性回歸模型預測溫度為時該批紫甘薯死亡株數(shù)(結果取整數(shù)).
附:對于一組數(shù)據(jù),,……,,
①線性相關系數(shù),通常情況下當大于0.8時,認為兩
個變量有很強的線性相關性.
②其回歸直線的斜率和截距的最小二乘估計分別為:
;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)如圖所示,已知以點為圓心的圓與直線相切.過點的動直線與圓相交于,兩點,是的中點,直線與相交于點.
(1)求圓的方程;
(2)當時,求直線的方程.
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在桂林市某中學高中數(shù)學聯(lián)賽前的模擬測試中,得到甲、乙兩名學生的6次模擬測試成績(百分制)的莖葉圖.分數(shù)在85分或85分以上的記為優(yōu)秀.
(1)根據(jù)莖葉圖讀取出乙學生6次成績的眾數(shù),并求出乙學生的平均成績以及成績的中位數(shù);
(2)若在甲學生的6次模擬測試成績中去掉成績最低的一次,在剩下5次中隨機選擇2次成績作為研究對象,求在選出的成績中至少有一次成績記為優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,底面為菱形,側面為等邊三角形,且側面底面, , 分別為, 的中點.
(Ⅰ)求證: .
(Ⅱ)求證:平面平面.
(Ⅲ)側棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com