【題目】(本小題滿分13分)如圖所示,已知以點(diǎn)為圓心的圓與直線相切.過(guò)點(diǎn)的動(dòng)直線與圓相交于,兩點(diǎn),是的中點(diǎn),直線與相交于點(diǎn).
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程.
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2)或;(3)答案見(jiàn)解析.
【解析】
(I)由點(diǎn)到直線的距離公式求出半徑,然后可寫(xiě)出圓A的標(biāo)準(zhǔn)方程.
(2)討論直線l斜率存在與不存在兩種情況,當(dāng)斜率存在時(shí),可設(shè)直線的方程為,然后利用,
可建立關(guān)于k的方程,求出k值.
(3)根據(jù)向量垂直的充要條件可知 即=.然后再利用向量的坐標(biāo)表示,證明是定值.再證明時(shí)要注意對(duì)直線斜率k分存在與不存在兩種情況討論.
解:(1)設(shè)圓的半徑為.圓與直線相切,
.
圓的方程為. ……………………………4分
(2)當(dāng)直線與軸垂直時(shí),易知符合題意;…………………5分
當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,
.
由,得.
直線的方程為.
所求直線的方程為或.………………………9分
(3) .
=.
當(dāng)直線與軸垂直時(shí),得,則又,
.
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為.
由解得.
.
.
綜上所述,是定值,且.…………………13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年一交警統(tǒng)計(jì)了某段路過(guò)往車(chē)輛的車(chē)速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車(chē)速 | |||||
事故次數(shù) |
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車(chē)速達(dá)到時(shí),可能發(fā)生的交通事故次數(shù).
(參考數(shù)據(jù):)
[參考公式:]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)求函數(shù)的最大值;
(2)對(duì)于任意,且,是否存在實(shí)數(shù),使恒
成立,若存在求出的范圍,若不存在,說(shuō)明理由;
(3)若正項(xiàng)數(shù)列滿足,且數(shù)列的前項(xiàng)和為,試判斷與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實(shí)數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;
(2)在(1)的條件下,判斷函數(shù)與函數(shù)的圖象公共點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(3)當(dāng)時(shí),函數(shù)的圖象始終在函數(shù)的圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:
先由命題解得;命題得,
(1)當(dāng),得命題,再由為真,得真且真,即可求解的取值范圍.
(2)由是的充分不必要條件,則是的充分必要條件,根據(jù)則 ,即可求解實(shí)數(shù)的取值范圍.
試題解析:
命題:由題得,又,解得;
命題: ,解得.
(1)若,命題為真時(shí), ,
當(dāng)為真,則真且真,
∴解得的取值范圍是.
(2)是的充分不必要條件,則是的充分必要條件,
設(shè), ,則 ;
∴∴實(shí)數(shù)的取值范圍是.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,又知此拋物線上一點(diǎn)到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)、,且中點(diǎn)橫坐標(biāo)為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為:,直線的方程為.
(1)求證:直線恒過(guò)定點(diǎn);
(2)當(dāng)直線被圓截得的弦長(zhǎng)最短時(shí),求直線的方程;
(3)在(2)的前提下,若為直線上的動(dòng)點(diǎn),且圓上存在兩個(gè)不同的點(diǎn)到點(diǎn)的距離為,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (>b>0)的左、右頂點(diǎn)分別為A1、A2,上、下頂點(diǎn)分別為B2、B1,O為坐標(biāo)原點(diǎn),四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個(gè)不同的動(dòng)點(diǎn),直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買(mǎi)一定金額的商品后即可抽獎(jiǎng).抽獎(jiǎng)方法是:從裝有個(gè)紅球,和個(gè)白球的甲箱與裝有個(gè)紅球,和個(gè)白球,的乙箱中,各隨機(jī)摸出個(gè)球,若模出的個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng).
(1)用球的標(biāo)號(hào)列出所有可能的模出結(jié)果;
(2)有人認(rèn)為:兩個(gè)箱子中的紅球比白球多所以中獎(jiǎng)的概率大于不中獎(jiǎng)的概率,你認(rèn)為正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com