【題目】已知橢圓的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.
(1)求橢圓C的方程;
(2)設直線上與橢圓C交于A,B兩點,點,且,求直線l的方程.
【答案】(1);(2)或.
【解析】
(1)根據(jù)橢圓的定義首先求得橢圓的短半軸,進而根據(jù)離心率求得橢圓的半焦距,根,和的關系求得,則橢圓方程可得.
(2)把直線方程與橢圓方程聯(lián)立消去,根據(jù)直線與橢圓的兩個交點判斷出判別式大于0,求得的范圍,設,的坐標,則根據(jù)韋達定理求得,的表達式,根據(jù)直線方程求得的表達式,進而可表示出中點的坐標,根據(jù)推斷出,可知,求得,則直線方程可求得.
(1)由已知,,
解得,,
所以,
所以橢圓的方程為.
(2)由得,,
直線與橢圓有兩個不同的交點,所以△,
解得.
設,,,,
則,,
計算,
所以,,中點坐標為,
因為,所以,,
所以,
解得,
經檢驗,符合題意,
所以直線的方程為或.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且當x∈[-1,1]時,f(x)=x2.令g(x)=f(x)-kx-k,若在區(qū)間[-1,3]內,函數(shù)g(x)=0有4個不相等實根,則實數(shù)k的取值范圍是( )
A.(0,+∞)B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.
方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.
方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.
(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;
(2)若某顧客獲得抽獎機會.
①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;
②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩名同學參加定點投籃測試,已知兩人投中的概率分別是和,假設兩人投籃結果相互沒有影響,每人各次投球是否投中也沒有影響.
(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達標,求甲達標的概率;
(Ⅱ)若每人有4次投球機會,如果連續(xù)兩次投中,則記為達標.達標或能斷定不達標,則終止投籃.記乙本次測試投球的次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)采用新工藝,把企業(yè)生產中排放的二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為噸,最多為噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產品價值為元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線C:與直線交于A、B兩點.
(1)當取得最小值為時,求的值.
(2)在(1)的條件下,過點作兩條直線PM、PN分別交拋物線C于M、N(M、N不同于點P)兩點,且的平分線與軸平行,求證:直線MN的斜率為定值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com