【題目】已知和個(gè)實(shí)數(shù)若有窮數(shù)列由數(shù)列的項(xiàng)重新排列而成,且下列條件同時(shí)成立:① 個(gè)數(shù)兩兩不同;②當(dāng)時(shí),都成立,則稱(chēng)為的一個(gè)“友數(shù)列”.
(1)若寫(xiě)出的全部“友數(shù)列”;
(2)已知是通項(xiàng)公式為的數(shù)列的一個(gè)“友數(shù)列”,且求(用表示);
(3)設(shè)求所有使得通項(xiàng)公式為的數(shù)列不能成為任何數(shù)列的“友數(shù)列”的正實(shí)數(shù)的個(gè)數(shù)(用表示).
【答案】(1)見(jiàn)解析(2)見(jiàn)解析(3)見(jiàn)解析
【解析】
(1)對(duì)分類(lèi)討論即可得到結(jié)果;
(2)由條件①知:3n個(gè)數(shù)兩兩不同,又 ,
,∴差值最大為3n,分類(lèi)討論即可得到結(jié)果;
(3)根據(jù)“友數(shù)列”的定義,分析即可得到結(jié)果.
解:(1)若 則 中存在兩個(gè)1,不妨設(shè),
則有 與②矛盾,
故有則,
∴
∴
即好數(shù)列 ;
(2)由條件①知:3n個(gè)數(shù)兩兩不同,又 ,
,
∴差值最大為3n,
而令k取1時(shí),由,
,
若,則,
而時(shí),
故只可能為某個(gè) 且 使,
則,矛盾,
∴必有則有,即 ,
其次,若
則此時(shí)差值中除外最大,
則有,,又,
∴,而,
則矛盾,
∴必有即
同理,若則有使
,且,
且,∴矛盾,
∴必有即,
接著考慮: ,,
若,
則有,使得,
又 ,矛盾,
∴
依次類(lèi)推即可.
故對(duì)于 時(shí),
且,
,
,
聯(lián)立,得,
∴,
對(duì)于 時(shí),
,
,
,
聯(lián)立,得,
∴,
(3) ,
若 為一個(gè)數(shù)列的“友數(shù)列”,
則亦為一個(gè)數(shù)列的友數(shù)列,
故不妨設(shè) ,則所有差排列如下:
:時(shí),易知與條件①②矛盾;
:時(shí),
,
,
觀(guān)察上面式子,若不存在,則先比較:與
,
,
在比較與大小,
,
綜上,不存在滿(mǎn)足題意的q值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn):(參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.
(1)將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程,并求出點(diǎn)的直角坐標(biāo);
(2)設(shè)為曲線(xiàn)上的點(diǎn),求中點(diǎn)到曲線(xiàn)上的點(diǎn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,二面角的平面角大小為,F是BE的中點(diǎn),求證:
(1)平面ABC;
(2)平面EDB;
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于的方程有唯一實(shí)數(shù)解,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線(xiàn)段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的右頂點(diǎn)為A,以A為圓心,b為半徑做圓,圓A與雙曲線(xiàn)C的一條漸近線(xiàn)相交于M,N兩點(diǎn),若(為坐標(biāo)原點(diǎn)),則雙曲線(xiàn)C的離心率為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿(mǎn)足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,若{bn}的前n項(xiàng)和為Tn,證明:Tn<.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com