已知函數(shù).
(1)若函數(shù)處取得極值,求實(shí)數(shù)的值;
(2)若,求函數(shù)在區(qū)間上的最大值和最小值.
(1)(2)最小值,最大值29

試題分析:(1)先求導(dǎo),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034110704335.png" style="vertical-align:middle;" />是函數(shù)的極值點(diǎn),則,即可求實(shí)數(shù)的值。(2)先求導(dǎo)再令導(dǎo)數(shù)等于0,導(dǎo)論導(dǎo)數(shù)的正負(fù)得函數(shù)的增減區(qū)間,根據(jù)函數(shù)的增減性可求其最值。
試題解析:解答:(1)∵函數(shù),
.                     2分
∵函數(shù)處取得極值,∴,
,∴實(shí)數(shù).               4分
經(jīng)檢驗(yàn),當(dāng)時(shí),取得極小值,故.             6分
(2)當(dāng)時(shí),.
,∴.             8分
∵在區(qū)間上,;在區(qū)間上,,
∴在區(qū)間上,函數(shù)單調(diào)遞減;在區(qū)間上,函數(shù)單調(diào)遞增.10分
.        11分
,∴.       12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax+ln x,其中a為常數(shù),e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=-1時(shí),求f(x)的最大值;
(2)當(dāng)a=-1時(shí),試推斷方程|f(x)|=是否有實(shí)數(shù)解,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為常數(shù)),直線(xiàn)與函數(shù)、的圖象都相切,且與函數(shù)圖象的切點(diǎn)的橫坐標(biāo)為
(1)求直線(xiàn)的方程及的值;
(2)若 [注:的導(dǎo)函數(shù)],求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),試討論方程的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù), 在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù), 若對(duì)于任意,總存在, 使得, 求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)設(shè),求的最小值;
(Ⅱ)如何上下平移的圖象,使得的圖象有公共點(diǎn)且在公共點(diǎn)處切線(xiàn)相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)a>0時(shí),討論的單調(diào)性;
(Ⅲ)若對(duì)任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=,x∈(1,+∞).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在區(qū)間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)()在區(qū)間上取得最小值4,則_      __.

查看答案和解析>>

同步練習(xí)冊(cè)答案