12.已知直角梯形ABEF,∠A=∠B=90°,AB=1,BE=2,AF=3,C為BE的中點(diǎn),AD=1,如圖(1),沿直線CD折成直二面角,連結(jié)部分線段后圍成一個(gè)空間幾何體(如圖2)
(1)求異面直線BD與EF所成角的大。
(2)設(shè)AD的中點(diǎn)為G,求二面角G-BF-E的余弦值.
(3)求過A、B、C、D、E這五個(gè)點(diǎn)的球的表面積.

分析 (1)以點(diǎn)D為坐標(biāo)原點(diǎn),分別以DA,DC,DF所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系.利用cos$<\overrightarrow{DB},\overrightarrow{EF}>$=$\frac{\overrightarrow{DB}•\overrightarrow{EF}}{|\overrightarrow{DB}||\overrightarrow{EF}|}$,即可得出.
(2)$G(\frac{1}{2},0,0)$,設(shè)平面$\overrightarrow{BEF}$的法向量為$\overrightarrow{{n}_{1}}$=(x,y,z),利用$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{BF}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{GF}=0}\end{array}\right.$,可得平面GBF的法向量$\overrightarrow{{n}_{1}}$=(4,-2,1),同理可得平面BEF的法向量$\overrightarrow{n_1}=(1,1,1)$.利用cos$<\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}>$=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$,即可得出.
(3)連接AE,取中點(diǎn)為O,連接OA,OB,OC,OD,OE,由已知易得OA=OB=OC=OD=OE,可得DO長為所求球的半徑.

解答 解:(1)以點(diǎn)D為坐標(biāo)原點(diǎn),分別以DA,DC,DF所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系.
D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),E(0,1,1),F(xiàn)(0,0,2).
$\overrightarrow{DB}$=(1,1,0),$\overrightarrow{EF}$=(0,-1,1),cos$<\overrightarrow{DB},\overrightarrow{EF}>$=$\frac{\overrightarrow{DB}•\overrightarrow{EF}}{|\overrightarrow{DB}||\overrightarrow{EF}|}$=$\frac{1}{2}$,
∴異面直線BD與EF所成角為$\frac{π}{3}$.
(2)$G(\frac{1}{2},0,0)$,
設(shè)平面$\overrightarrow{BEF}$的法向量為$\overrightarrow{{n}_{1}}$=(x,y,z),
$\overrightarrow{BF}$=(1,1,-2),$\overrightarrow{GF}$=$(-\frac{1}{2},0,2)$.
∴$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{BF}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{GF}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{x+y-2z=0}\\{-\frac{1}{2}x+2z=0}\end{array}\right.$,
取平面GBF的法向量$\overrightarrow{{n}_{1}}$=(4,-2,1),
同理可得平面BEF的法向量$\overrightarrow{n_1}=(1,1,1)$.
cos$<\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}>$=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{\sqrt{7}}{7}$.
∵二面角G-BF-C與兩向量的夾角互補(bǔ),
∴二面角G-BF-C的余弦值為:$-\frac{{\sqrt{7}}}{7}$.
(3)連接AE,取中點(diǎn)為O,連接OA,OB,OC,OD,OE,
由已知易得OA=OB=OC=OD=OE,∴DO長為所求球的半徑.
O$(\frac{1}{2},\frac{1}{2},\frac{1}{2})$,$\overrightarrow{DO}$=$(\frac{1}{2},\frac{1}{2},\frac{1}{2})$,∴r=$|\overrightarrow{DO}|$=$\sqrt{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}$=$\frac{\sqrt{3}}{2}$.
∴S球的表面積=4πr2=3π.

點(diǎn)評(píng) 本題考查了空間位置關(guān)系、空間角、法向量的應(yīng)用、向量夾角公式、球的表面積、直角三角形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知傾斜角為α的直線l過x軸上一點(diǎn)A(非坐標(biāo)原點(diǎn)O),直線l上有一點(diǎn)P(cos130°,sin50°),且∠APO=30°,則α等于( 。
A.100°B.160°C.100°或160°D.130°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=x-$\sqrt{3x-2}$的值域?yàn)椋ā 。?table class="qanwser">A.$[{\frac{2}{3},+∞})$B.$({\frac{2}{3},+∞})$C.$[{-\frac{1}{12},+∞})$D.$({-\frac{1}{12},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點(diǎn)(2,3),且右焦點(diǎn)為圓C:(x-2)2+y2=2的圓心.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓E上在y軸左側(cè)的一點(diǎn),過點(diǎn)P作圓C的兩條切線,切點(diǎn)分別為A、B,且兩切線的斜率之積為$\frac{1}{2}$,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),問:
(1)兩數(shù)之和為8的概率;
(2)兩數(shù)之和是3的倍數(shù)的概率;
(3)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=25的內(nèi)部的概率.(解答過程須有必要的文字?jǐn)⑹觯?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是( 。
A.若長方體的長、寬、高各不相同,則長方體的三視圖中不可能有正方形(以長×寬所在的平面為主視面)
B.照片是三視圖中的一種
C.若三視圖中有圓,則原幾何體中一定有球體
D.圓錐的三視圖都是等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.與點(diǎn)A(-1,0)和點(diǎn)B(1,0)連線的斜率之和為-1的動(dòng)點(diǎn)P的軌跡方程是( 。
A.x2+y2=3B.y=$\sqrt{1-{x}^{2}}$C.x2+2xy=1(x≠±1)D.x2+y2=9(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=lnx-px+1,p為常數(shù)(p>0),$g(x)=\frac{3}{2}a{x^2}-xlnx-(3a-1)x+\frac{3}{2}a-1$.
(1)若對(duì)任意的x>0,恒有f(x)≤0,求p的取值范圍;
(2)對(duì)任意的x∈[1,+∞),函數(shù)g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.曲線y=xex+2x+1在點(diǎn)(0,1)處的切線方程為( 。
A.x∈RB.y=3x+1C.x∈RD.x∈R

查看答案和解析>>

同步練習(xí)冊(cè)答案