A. | $[{\frac{2}{3},+∞})$ | B. | $({\frac{2}{3},+∞})$ | C. | $[{-\frac{1}{12},+∞})$ | D. | $({-\frac{1}{12},+∞})$ |
分析 利用換元法轉(zhuǎn)化為二次函數(shù)求值域.
解答 解:由題意:函數(shù)y=x-$\sqrt{3x-2}$.
設(shè)$\sqrt{3x-2}$=t,(t≥0),則x=$\frac{1}{3}({t}^{2}+2)$.
那么函數(shù)y=x-$\sqrt{3x-2}$轉(zhuǎn)化為:f(t)=$\frac{1}{3}{t}^{2}-t+\frac{2}{3}$.
開口向上,對稱軸t=$\frac{3}{2}$;
∵t≥0,
∴當t=$\frac{3}{2}$時,函數(shù)f(t)取得最小值為f($\frac{3}{2}$)min=$-\frac{1}{12}$,即函數(shù)y=x-$\sqrt{3x-2}$的最小值為$-\frac{1}{12}$.
所以值域為[$-\frac{1}{12}$,+∞).
故選C,
點評 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=$\frac{x+1}{x+2}$ | B. | f(x)=$\frac{x}{x+1}$ | C. | f(x)=$\frac{x-1}{x}$ | D. | f(x)=$\frac{1}{x+2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4,-1 | B. | -1 | C. | 1,-4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com