(本題滿分12分)如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點D是AB的中點
(Ⅰ)求證:AC⊥BC1
(Ⅱ)求二面角的平面角的正切值



(Ⅰ)證明:直三棱柱ABC-A1B1C1,底面三邊長AC=3,BC=4,AB=5,

∴ AC⊥BC,                                       …………………2分
又 AC⊥,且
∴ AC⊥平面BCC1,又平面BCC1        ……………………………………4分
∴ AC⊥BC                           ……………………………………5分
(Ⅱ)解法一:取中點,過,連接    

中點,
 ,又平面
平面,
平面平面

 又 
平面,平面    
  又
是二面角的平面角             …………………………10分
AC=3,BC=4,AA1=4,
∴在中,,
              ……………………………………11分
∴二面角的正切值             ………………………………12分
解法二:以分別為軸建立如圖所示空間直角坐標系 ………6分
AC=3,BC=4,AA1=4,
 ,,

平面的法向量      &nbs

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆江西高安中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

(1)當時,求平面與平面的夾角的余弦值;

(2)當為何值時,在棱上存在點,使平面?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三3月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點,中點,上一個動點.

(Ⅰ)確定點的位置,使得;

(Ⅱ)當時,求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西桂林中學高三7月月考試題理科數(shù)學 題型:解答題

(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

 ⑴求異面直線PD與AE所成角的大。

 ⑵求證:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大小..

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學 題型:解答題

 

(本題滿分12分)

如圖3,在圓錐中,已知的直徑的中點.

(I)證明:

(II)求直線和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(文) 題型:解答題

(本題滿分12分)

如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。

   (1)求證:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

 

查看答案和解析>>

同步練習冊答案