【題目】已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn , 且S2=6,S4=30,n∈N* , 數(shù)列{bn}滿足bnbn+1=an , b1=1
(1)求an , bn;
(2)求數(shù)列{bn}的前n項(xiàng)和為Tn .
【答案】
(1)解:設(shè)正項(xiàng)等比數(shù)列{an}的公比為q(q>0),
由題意可得a1+a1q=6,a1+a1q+a1q2+a1q3=30,
解得a1=q=2(負(fù)的舍去),
可得an=a1qn﹣1=2n;
由bnbn+1=an=2n,b1=1,
可得b2=2,
即有bn+1bn+2=an=2n+1,
可得 =2,
可得數(shù)列{bn}中奇數(shù)項(xiàng),偶數(shù)項(xiàng)均為公比為2的等比數(shù)列,
即有bn= ;
(2)解:當(dāng)n為偶數(shù)時,前n項(xiàng)和為Tn=(1+2+..+ )+(2+4+..+ )
= + =3( )n﹣3;
當(dāng)n為奇數(shù)時,前n項(xiàng)和為Tn=Tn﹣1+
=3( )n﹣1﹣3+ =( )n+3﹣3.
綜上可得,Tn=
【解析】(1)設(shè)正項(xiàng)等比數(shù)列{an}的公比為q(q>0),由等比數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公比均為2,可得an=a1qn﹣1=2n;再由n換為n+1,可得數(shù)列{bn}中奇數(shù)項(xiàng),偶數(shù)項(xiàng)均為公比為2的等比數(shù)列,運(yùn)用等比數(shù)列的通項(xiàng)公式,即可得到所求bn;(2)討論n為奇數(shù)和偶數(shù),運(yùn)用分組求和和等比數(shù)列的求和公式,化簡整理即可得到所求和.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進(jìn)行消防知識競賽.下圖(1)和下圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按, , , 分組,得到的頻率分布直方圖.
(1)請計(jì)算高一年級和高二年級成績小于60分的人數(shù);
(2)完成下面列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?
附:臨界值表及參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x-).
(1)利用“五點(diǎn)法”,完成以下表格,并畫出函數(shù)f(x)在一個周期上的圖象;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間和對稱中心的坐標(biāo);
(3)如何由y=cosx的圖象變換得到f(x)的圖象.
2x- | 0 | π | 2π | ||
x | |||||
f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為的正方形中有一個不規(guī)則的圖形,可按下面方法估計(jì)的面積:在正方形中隨機(jī)投擲個點(diǎn),若個點(diǎn)中有個點(diǎn)落入中,則的面積的估計(jì)值為,假設(shè)正方形的邊長為2, 的面積為1,并向正方形中隨機(jī)投擲個點(diǎn),以表示落入中的點(diǎn)的數(shù)目.
(I)求的均值;
(II)求用以上方法估計(jì)的面積時, 的面積的估計(jì)值與實(shí)際值之差在區(qū)間內(nèi)的概率.
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體ABCDEF中,四邊形ABCD是矩形,EF∥AD,F(xiàn)A⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于點(diǎn)P
(1)證明:PF∥面ECD;
(2)求二面角B﹣EC﹣A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=,則關(guān)于x的函數(shù)F(x)=f(x)-的所有零點(diǎn)之和為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=sin(ωx+ )向右平移 個單位后,所得的圖象與原函數(shù)圖象關(guān)于x軸對稱,則ω的最小正值為( )
A.1
B.2
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),命題,;命題.
(1)若為真命題,求的取值范圍;
(2)若為真命題,求的取值范圍;
(3)若“”為假命題,“”為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左右焦點(diǎn)分別為, ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.
(1)求橢圓的方程;
(2)設(shè)直線: 與橢圓相交于不同的兩點(diǎn), , 是線段的中點(diǎn).若經(jīng)過點(diǎn)的直線與直線垂直于點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com