已知直線(xiàn)l1的方程為y=2x+3,若直線(xiàn)l2與l1關(guān)于直線(xiàn)y=-x對(duì)稱(chēng),則直線(xiàn)l2的斜率為   
【答案】分析:由于直線(xiàn)l2與l1關(guān)于直線(xiàn)y=-x對(duì)稱(chēng),故可在l2上設(shè)點(diǎn)(x,y),關(guān)于直線(xiàn)y=-x對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(-y,-x),代入直線(xiàn)l1的方程,可得直線(xiàn)l2的方程,從而可求斜率.
解答:解:在l2上設(shè)點(diǎn)(x,y),關(guān)于直線(xiàn)y=-x對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(-y,-x),
∵直線(xiàn)l2與l1關(guān)于直線(xiàn)y=-x對(duì)稱(chēng),∴-x=-2y+3
即x-2y+3=0
∴直線(xiàn)l2的斜率為
故答案為
點(diǎn)評(píng):本題的考點(diǎn)是與直線(xiàn)關(guān)于點(diǎn)、直線(xiàn)對(duì)稱(chēng)的直線(xiàn)方程,主要考查直線(xiàn)關(guān)于直線(xiàn)的對(duì)稱(chēng)問(wèn)題,關(guān)鍵是轉(zhuǎn)化為點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng)點(diǎn)的問(wèn)題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l1的方程為3x+4y-12=0.
(1)若直線(xiàn)l2與l1平行,且過(guò)點(diǎn)(-1,3),求直線(xiàn)l2的方程;
(2)若直線(xiàn)l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4,求直線(xiàn)l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l1的方程為y=x,直線(xiàn)l2的方程為y=ax+b(a,b為實(shí)數(shù)),當(dāng)直線(xiàn)l1與l2夾角的范圍為[0,
π
12
)時(shí),a的取值范圍是( 。
A、(
3
3
,1)∪(1,
3
B、(0,1)
C、(
3
3
,
3
D、(1,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l1的方程為y=x,直線(xiàn)l2的方程為ax-y=0(a為實(shí)數(shù)).當(dāng)直線(xiàn)l1與直線(xiàn)l2的夾角在(0,
π12
)之間變動(dòng)時(shí),a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴州模擬)已知直線(xiàn)l1的方程為mx+y=5,直線(xiàn)l2經(jīng)過(guò)點(diǎn)(-4,3)且與圓x2+y2=25相切,若l1⊥l2,則m=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l1的方程為y=x,直線(xiàn)l2的方程為ax-y=0(a為實(shí)數(shù)).當(dāng)直線(xiàn)l1與直線(xiàn)l2的夾角在(0,
π
12
)之間變動(dòng)時(shí),a的取值范圍是
(
3
3
,1)∪(1,
3
)
(
3
3
,1)∪(1,
3
)

查看答案和解析>>

同步練習(xí)冊(cè)答案