(2012•貴州模擬)已知直線(xiàn)l1的方程為mx+y=5,直線(xiàn)l2經(jīng)過(guò)點(diǎn)(-4,3)且與圓x2+y2=25相切,若l1⊥l2,則m=( 。
分析:用點(diǎn)斜式設(shè)出直線(xiàn)l2的方程,根據(jù)圓心O到直線(xiàn)l2的距離等于半徑求出直線(xiàn)l2的斜率,再由l1⊥l2,可得這兩條直線(xiàn)的斜率之積等于-1,由此求得m的值.
解答:解:設(shè)直線(xiàn)l2的方程為 y-3=k(x+4),即 kx-y+4k+3=0.由題意可得圓心O到直線(xiàn)l2的距離等于半徑,
|0-0+4k+3|
k2+1
=5,解得 k=
4
3

再由l1⊥l2,可得這兩條直線(xiàn)的斜率之積等于-1,即-m•
4
3
=-1,
∴m=
3
4

故選C.
點(diǎn)評(píng):本題主要考查直線(xiàn)和圓的位置關(guān)系,點(diǎn)到直線(xiàn)的距離公式,兩直線(xiàn)垂直的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴州模擬)已知圓C1的參數(shù)方程為
x=cosφ
y=sinφ
(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=2cos(θ+
π
3
)

(Ⅰ)將圓C1的參數(shù)方程化為普通方程,將圓C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓C1、C2是否相交,若相交,請(qǐng)求出公共弦的長(zhǎng);若不相交,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴州模擬)已知函數(shù)f(x)=
a+blnx
x+1
在點(diǎn)(1,f(1))處的切線(xiàn)方程為x+y=2.
(I)求a,b的值;
(II)對(duì)函數(shù)f(x)定義域內(nèi)的任一個(gè)實(shí)數(shù)x,f(x)<
m
x
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴州模擬)若點(diǎn)P(1,1)為圓x2+y2-6x=0的弦MN的中點(diǎn),則弦MN所在直線(xiàn)方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴州模擬)(x+1)(1-2x)5展開(kāi)式中,x3的系數(shù)為
-40
-40
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴州模擬)設(shè)集合M={x|x2-x-6<0},N={x|y=log2(x-1)},則M∩N等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案