【題目】將函數(shù)fx)=sinx的圖象向右平移個單位,橫坐標縮小至原來的倍(縱坐標不變)得到函數(shù)y=gx)的圖象.

(1)求函數(shù)gx)的解析式;

(2)若關(guān)于x的方程2gx)-m=0在x∈[0,]時有兩個不同解,求m的取值范圍.

【答案】(1) gx)=sin(2x-) (2)

【解析】

(1)直接利用函數(shù)的關(guān)系式的平移變換和伸縮變換求g(x)的函數(shù)關(guān)系式.(2)利用(1)的結(jié)論,進一步利用函數(shù)的定義域求出函數(shù)的值域,利用函數(shù)的單調(diào)性的應(yīng)用求出參數(shù)m的取值范圍.

(1)函數(shù)fx)=sinx的圖象向右平移個單位,橫坐標縮小至原來的倍(縱坐標不變),

得到函數(shù)y=gx)=sin(2x-)的圖象.

所以gx)=sin(2x-).

(2)關(guān)于x的方程2gx)-m=0,

所以:,

由于:x∈[0,]時,2x-,

所以:函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.

故:

則:m的取值范圍為,

所以方程2gx)-m=0在x∈[0,]時有兩個不同解,

m的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線與軸平行.

(Ⅰ)試討論上的單調(diào)性;

(Ⅱ)(。┰O(shè),的最小值;

(ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ).

(1)若直線和函數(shù)的圖象相切,求的值;

(2)當(dāng)時,若存在正實數(shù),使對任意都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任對該班22名學(xué)生進行了作業(yè)量的調(diào)查,在喜歡玩電腦游戲的12人中,有10人認為作業(yè)多,2人認為作業(yè)不多;在不喜歡玩電腦游戲的10人中,有3人認為作業(yè)多,7人認為作業(yè)不多.

(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表.

(2)對于該班學(xué)生,能否在犯錯誤概率不超過0.01的前提下認為喜歡玩電腦游戲與認為作業(yè)多有關(guān)系?

下面臨界值表僅供參考:

0.05

0.01

0.001

3.841

6.635

10.828

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(1,+∞)上的函數(shù)fx)=

(1)當(dāng)m≠0時,判斷函數(shù)fx)的單調(diào)性,并證明你的結(jié)論;

(2)當(dāng)m=時,求解關(guān)于x的不等式fx2-1)>f(3x-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,x軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為,A,B兩點的極坐標分別為.

(1)求圓C的普通方程和直線的直角坐標方程;

(2)點P是圓C上任一點,求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下數(shù)據(jù)資料:

該興趣小組確定的研究方案是:先從這6組(每個有序數(shù)對叫作一組)數(shù)據(jù)中隨機選取2組作為檢驗數(shù)據(jù),用剩下的4組數(shù)據(jù)求線性回歸方程.

(1)若選取的是1月和6月的兩組數(shù)據(jù)作為檢驗數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(Ⅱ)中所得到的線性回歸方程是否是理想的?

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):

(年)

2

3

4

5

6

(萬元)

1

2.5

3

4

4.5

參考公式:,.

(1)若知道呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)內(nèi)有極值.

(1)求實數(shù)a的取值范圍;

(2)x1(0,1),x2(1,+).求證:f(x2)-f(x1)>e+2-.注:e是自然對數(shù)的底數(shù).

查看答案和解析>>

同步練習(xí)冊答案