【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下數(shù)據(jù)資料:

該興趣小組確定的研究方案是:先從這6組(每個(gè)有序數(shù)對叫作一組)數(shù)據(jù)中隨機(jī)選取2組作為檢驗(yàn)數(shù)據(jù),用剩下的4組數(shù)據(jù)求線性回歸方程.

(1)若選取的是1月和6月的兩組數(shù)據(jù)作為檢驗(yàn)數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(Ⅱ)中所得到的線性回歸方程是否是理想的?

參考公式:.

【答案】(1);(2)見解析.

【解析】分析:(1)直接由回歸直線方程的系數(shù)公式計(jì)算出系數(shù);

(2)由回歸直線方程,計(jì)算預(yù)測值,與實(shí)際數(shù)據(jù)比較可得.

詳解:(1)由數(shù)據(jù)求得.由公式求得,再由求得:.

所以關(guān)于的線性回歸方程為.

(2)當(dāng)時(shí),;當(dāng)時(shí),.

所以,該小組所得線性回歸方程是理想的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=30°a=4,b=5,那么滿足條件的△ABC( 。

A. 無解 B. 有一個(gè)解 C. 有兩個(gè)解 D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.據(jù)統(tǒng)計(jì),某公司200名員工中90%的人使用微信,其中每天使用微信時(shí)間在一小時(shí)以內(nèi)的有60人,其余的員工每天使用微信時(shí)間在一小時(shí)以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個(gè)階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都是青年人.

(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出并完成2×2列聯(lián)表:

(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有99.9%的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?

(3)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)fx)=sinx的圖象向右平移個(gè)單位,橫坐標(biāo)縮小至原來的倍(縱坐標(biāo)不變)得到函數(shù)y=gx)的圖象.

(1)求函數(shù)gx)的解析式;

(2)若關(guān)于x的方程2gx)-m=0在x∈[0,]時(shí)有兩個(gè)不同解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈(0,+∞)時(shí),不等式9x﹣m3x+m+1>0恒成立,則m的取值范圍是(
A.2﹣2 <m<2+2
B.m<2
C.m<2+2
D.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,四點(diǎn),,中恰有兩個(gè)點(diǎn)為橢圓的頂點(diǎn),一個(gè)點(diǎn)為橢圓的焦點(diǎn).

(1)求橢圓的方程;

(2)若斜率為1的直線與橢圓交于不同的兩點(diǎn),且,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合P={x|x2﹣x﹣6<0},Q={2a≤x≤a+3}.
(1)若P∪Q=P,求實(shí)數(shù)a的取值范圍;
(2)若P∩Q=,求實(shí)數(shù)a的取值范圍;
(3)若P∩Q={x|0≤x<3},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,函數(shù)的定義域?yàn)榧?/span>.

(I)求集合.

(II)當(dāng)時(shí),若全集,求;

(III)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案