【題目】已知定義在(1,+∞)上的函數(shù)fx)=

(1)當(dāng)m≠0時(shí),判斷函數(shù)fx)的單調(diào)性,并證明你的結(jié)論;

(2)當(dāng)m=時(shí),求解關(guān)于x的不等式fx2-1)>f(3x-3).

【答案】(1)見解析;(2)(,2)

【解析】

(1)利用函數(shù)單調(diào)性的定義進(jìn)行證明即可;(2)利用函數(shù)的單調(diào)性寫出滿足的不等式組,從而可得不等式的解集.

(1)根據(jù)題意,設(shè)1<x1x2,

fx1)-fx2)=-=m×

又由1<x1x2,則(x2-x1)>0,(x2-1)>0,(x1-1)>0,

當(dāng)m>0時(shí),fx1)>fx2),fx)在(1,+∞)上遞減;

當(dāng)m<0時(shí),fx1)<fx2),fx)在(1,+∞)上遞增;

(2)當(dāng)m=時(shí),fx)為減函數(shù),則fx2-1)>f(3x-3),

解可得:x<2,

即不等式的解集為(,2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2個(gè)、3個(gè)、4個(gè),乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3個(gè),某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,問兩只手中所取的球顏色不同的概率是多少?
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記max{a,b}= ,設(shè)M=max{|x﹣y2+4|,|2y2﹣x+8|},若對(duì)一切實(shí)數(shù)x,y,M≥m2﹣2m都成立,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.據(jù)統(tǒng)計(jì),某公司200名員工中90%的人使用微信,其中每天使用微信時(shí)間在一小時(shí)以內(nèi)的有60人,其余的員工每天使用微信時(shí)間在一小時(shí)以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個(gè)階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都是青年人.

(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出并完成2×2列聯(lián)表:

(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有99.9%的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?

(3)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=AD=2,BC=1,CD=
(1)求證:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)fx)=sinx的圖象向右平移個(gè)單位,橫坐標(biāo)縮小至原來的倍(縱坐標(biāo)不變)得到函數(shù)y=gx)的圖象.

(1)求函數(shù)gx)的解析式;

(2)若關(guān)于x的方程2gx)-m=0在x∈[0,]時(shí)有兩個(gè)不同解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,四點(diǎn),,,中恰有兩個(gè)點(diǎn)為橢圓的頂點(diǎn),一個(gè)點(diǎn)為橢圓的焦點(diǎn).

(1)求橢圓的方程;

(2)若斜率為1的直線與橢圓交于不同的兩點(diǎn),且,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

時(shí),求函數(shù)的最大值和最小值;

⑵求的取值范圍,使上是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案