精英家教網 > 高中數學 > 題目詳情

設函數f(x)=(x-2008)(x-2009)+數學公式,有


  1. A.
    在定義域內無零點
  2. B.
    存在兩個零點,且分別在(-∞,2008)、(2009,+∞)內
  3. C.
    存在兩個零點,且分別在(-∞,-2007)、(2007,+∞)內
  4. D.
    存在兩個零點,都在(2008,2009)內
D
分析:函數f(x)=(x-2008)(x-2009)+的圖象可由函數f(x)=(x-2008)(x-2009)的圖象向上平移個單位,故由圖象可得答案.
解答:函數f(x)=(x-2008)(x-2009)+的圖象可由函數f(x)=(x-2008)(x-2009)的圖象向上平移個單位,
而函數f(x)=(x-2008)(x-2009)的兩個零點分別為2008和2009,故由圖象可得f(x)存在兩個零點,都在(2008,2009)內
故選D
點評:本題考查函數的零點、函數圖象的平移變換、考查利用所學知識解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調研數學試卷(一)(解析版) 題型:解答題

設函數f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數的最小值;
(3)設函數g(x)=lnx-2x2+4x+t(t為常數),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數m有且只有一個,求實數m和t的值.

查看答案和解析>>

科目:高中數學 來源:2011年江蘇省蘇州市高考數學一模試卷(解析版) 題型:解答題

設函數f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數的最小值;
(3)設函數g(x)=lnx-2x2+4x+t(t為常數),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數m有且只有一個,求實數m和t的值.

查看答案和解析>>

同步練習冊答案