在等差數(shù)列{an}中,a2=2,a6=8,則a10的值為
 
考點(diǎn):等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項公式求解.
解答: 解:在等差數(shù)列{an}中,∵a2=2,a6=8,
a1+d=2
a1+5d=8
,解得a1=
1
2
,d=
3
2
,
a10=
1
2
+9×
3
2
=14.
故答案為:14.
點(diǎn)評:本題考查數(shù)列的第10項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的通項公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算
(1-4i)(1+i)+2+4i
3+4i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD中,A(-1,3),B(3,-2),C(6,-1),則點(diǎn)D的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:
①實數(shù)都在實軸上;
②z∈C,則|z|=
z
.
z

③虛數(shù)都在虛軸上;
④z∈C,|z|=1,則z=±1;
⑤z∈C,則z為純虛數(shù)的充要條件是
.
z
=-z;
⑥z∈C,則|z|2=z2;
⑦z1,z2∈C,若z12+z22=0,則z1=z2=0
其中真命題的編號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}中,a1=1,an+1=
an
an+1
(n∈N*),若am=
1
5
,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,給出下列判斷:
(1)函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
(2)函數(shù)y=f(x)在區(qū)間(-
1
2
,2)內(nèi)單調(diào)遞增;
(3)當(dāng)x=-
1
2
時,函數(shù)y=f′(x)有極大值;
(4)當(dāng)x=2時,函數(shù)y=f(x)有極小值.
則上述判斷中不正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓錐的全面積是底面積的3倍,則它的側(cè)面展開圖的圓心角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,
lim
n→∞
an
1+an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為R,導(dǎo)函數(shù)f′(x)的圖象如圖所示,則函數(shù)f(x)的極大值點(diǎn)有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案