【題目】已知函數(shù),對稱軸為,且.

(1)求的值;

(2)求函數(shù)上的最值.

(3)若函數(shù),且方程有三個解,求的取值范圍.

【答案】(1).

(2),

(3)

【解析】

1)由對稱軸可得,根據(jù),可得;

2)由(1)可得上單調遞減,上單調遞增,進而求得最值;

3)由題可得,代入方程可得,,整理得到,由于方程有三個解,可轉化為有兩個根,一個在區(qū)間,另一個在,列出不等關系求解即可

解:(1)由題,對稱軸為,,

因為,所以

2)由(1)可得,因為對稱軸為,

所以上單調遞減,上單調遞增,

所以,

3)由題,,定義域為,

因為方程有三個解,有三個解,

,則方程為,,

,;當,,

所以有兩個根,一個在區(qū)間,另一個在,

,

所以,解得,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左右焦點分別為,,離心率為.若點為橢圓上一動點,的內切圓面積的最大值為.

(1)求橢圓的標準方程;

(2)過點作斜率為的動直線交橢圓于兩點,的中點為,在軸上是否存在定點,使得對于任意值均有,若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x),滿足當x>0時,f(x)>1,且對任意的x,y,有,f(1)2,.

1)求f(0)的值;

2)求證:對任意x,都有f(x)>0;

3)解不等式f(32x)>4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過,兩點,與軸的另一個交點為,頂點為,連結

1)求該拋物線的表達式;

2)點為該拋物線上的一動點(與點、不重合),設點的橫坐標為.當點在直線的下方運動時,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在(2,2)上的奇函數(shù).當x(20)時,f(x)=-loga(x)loga(2x),其中a>1.

1)求函數(shù)f(x)的零點.

2)若t(0,2),判斷函數(shù)f(x)在區(qū)間(0,t]上是否有最大值和最小值.若有,請求出最大值和最小值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個結論,其中正確的結論是(

A.函數(shù)的最大值為

B.已知函數(shù))在上是減函數(shù)則a的取值范圍是

C.在同一直角坐標系中,函數(shù)的圖象關于y軸對稱

D.在同一直角坐標系中,函數(shù)的圖象關于直線對稱

E.已知定義在R上的奇函數(shù)內有1010個零點,則函數(shù)的零點個數(shù)為2021

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)求的值;

(Ⅱ)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分”,估計的概率;

(Ⅲ)在抽取的名學生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關”?

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

參考公式及數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關于t的線性回歸方程;

(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過的直線與橢圓交于的兩點,且軸,若為橢圓上異于的動點且,則該橢圓的離心率為___.

查看答案和解析>>

同步練習冊答案