設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為C.求:
(Ⅰ)求實(shí)數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;
(Ⅰ)b<1 且b≠0.(Ⅱ).
本小題主要考查二次函數(shù)圖象與性質(zhì)、圓的方程的求法.
(1)令=0,得拋物線與軸交點(diǎn)是(0,b);令,
由題意b≠0 且Δ>0,解得b<1 且b≠0.
(II)設(shè)所求圓的一般方程為:,令y=0,得,
根據(jù)它與=0 是同解方程,可得D,F(xiàn)的值,再根據(jù)=0 得=0,此方程有一個(gè)根為b,代入得出E=―b―1.從而可求出圓C的方程.
(Ⅰ)令=0,得拋物線與軸交點(diǎn)是(0,b);令,
由題意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)設(shè)所求圓的一般方程為:,
=0 得
這與=0 是同一個(gè)方程,
故D=2,F(xiàn)=
=0 得=0,此方程有一個(gè)根為b,代入得出E=―b―1.
所以圓C 的方程為
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
如圖,是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的一動(dòng)點(diǎn).
 
(1)證明:面PAC面PBC;
(2)若,則當(dāng)直線與平面所成角正切值為時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.若過(guò)點(diǎn)的直線與曲線有公共點(diǎn),則直線的斜率最小值為 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一個(gè)圓C和軸相切,圓心在直線上,且在直線上截得的弦長(zhǎng)為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線過(guò)橢圓的上頂點(diǎn)B和左焦點(diǎn)F,且被圓截得的弦長(zhǎng)為,若 則橢圓離心率的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)P(x,y)在直線上,則的最小值是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知A、B是圓O:上的兩點(diǎn),且|AB|=6,若以AB為直徑的圓M恰好經(jīng)過(guò)
點(diǎn)C(1,-1),則圓心M的軌跡方程是              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線:和圓C:,則直線與圓C的位置關(guān)系為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分).已知圓C: 
直線
(1)證明:不論取何實(shí)數(shù),直線與圓C恒相交;
(2)求直線被圓C所截得的弦長(zhǎng)最小時(shí)直線的方程;

查看答案和解析>>

同步練習(xí)冊(cè)答案