(拓展深化)如圖①所示,△ABC內(nèi)接于⊙O,AB=AC,D是BC邊上的一點,E是直線AD和△ABC外接圓的交點.
(1)求證:AB2=AD·AE;
(2)如圖②所示,當D為BC延長線上的一點時,第(1)題的結(jié)論成立嗎?若成立,請證明;若不成立,請說明理由.
科目:高中數(shù)學 來源: 題型:解答題
已知和相交于A、B兩點,過A點作切線交于點E,連接EB并延長交于點C,直線CA交于點D,
(1)當點D與點A不重合時(如圖1),證明:ED2=EB·EC;
(2)當點D與點A重合時(如圖2),若BC=2,BE=6,求的直徑長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知PE切⊙O于點E,割線PBA交⊙O于A,B兩點,∠APE的平分線和AE,BE分別交于點C,D.
求證:(1)CE=DE;(2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知四邊形ABCD內(nèi)接于⊙O,∠C=130°,AD是⊙O的直徑,過B作⊙O的切線FE,求∠ABE的度數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(拓展深化)如圖,M為線段AB的中點,AE與BD交于點C,∠DME=∠A=∠B=α.且DM交AC于F,ME交BC于G,
(1)寫出圖中三對相似三角形,并證明其中的一對;
(2)連接FG,如果α=45°,AB=4,AF=3,求FG的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)選修4—1:幾何證明選講
如圖,直線為圓的切線,切點為,點在圓上,的角平分線交圓于點,垂直交圓于點。
(Ⅰ)證明:;
(Ⅱ)設(shè)圓的半徑為,,延長交于點,求外接圓的半徑。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com