不等式(x-1)
x+3
≥0的解集是( 。
A、{x|x>1}
B、{x|x≥1或x=-3}
C、{x|x≥1}
D、{x|x≥-3且x≠1}
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)負(fù)數(shù)沒(méi)有平方根得到x+3≥0,求出x的范圍,根據(jù)兩數(shù)相乘同號(hào)得正的法則得到x-1≥0,求出x的范圍,找出兩解集的交集,再加上特殊情況x=-3不等式成立,即可得到原不等式的解集.
解答: 解:∵x+3≥0,即x≥-3,
又∵
x+3
≥0,
∴當(dāng)x=-3時(shí),不等式成立;并且x-1≥0,即x≥1,
則原不等式的解集為{-3}∪[1,+∞).
故選B.
點(diǎn)評(píng):此題考查了不等式的解法,注意當(dāng)x=-3時(shí),容易漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

25人排成5×5方陣,從中選出3人分別擔(dān)任隊(duì)長(zhǎng)、副隊(duì)長(zhǎng)、紀(jì)律監(jiān)督員,要求這3人任兩人都不同行也不同列,則不同的任職方法數(shù)為(  )
A、7200種
B、1800種
C、3600種
D、4500種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于a的方程:a(a3-3a+10)-8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x∈R,若函數(shù)f(x)為單調(diào)遞增函數(shù),且對(duì)任意實(shí)數(shù)x,都有f[f(x)-ex]=e+1,則f(ln2)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列A:a1,a2,a3,…,an(0≤a1<a2<a3<…<an,n≥3,n∈N*)具有性質(zhì)P:對(duì)任意的i,j(1≤i≤j≤n,i,j∈N*),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是數(shù)列A中的項(xiàng),現(xiàn)下列命題正確的是:
 
.(寫(xiě)出所有正確答案的序號(hào))
①數(shù)列A:0,1,3與數(shù)列B:0,2,4,6都具有性質(zhì)P;
②a1=0;
③2(a1+a2+a3+…+an)=nan;
④當(dāng)n=5時(shí),a1,a2,a3,a4,a5成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程
13x-13-x
13x+13-x
=k有解,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義域在R上的增函數(shù),且不等式f(-ax)<f(2-a)對(duì)于任意x∈[0,1]都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一檔電視闖關(guān)節(jié)目規(guī)定:三人參加,三人同時(shí)闖關(guān)成功為一等獎(jiǎng),資金為2000元,三人中有兩人闖關(guān)成功為二等獎(jiǎng),資金炙1000元,三人中有一人闖關(guān)成功為三等獎(jiǎng),資金為400元,其它情況不得獎(jiǎng),現(xiàn)有甲乙丙三人參加此活動(dòng),甲乙闖關(guān)成功的概率都為
1
2
,丙闖關(guān)成功的概率為
3
4
,三人闖關(guān)相互獨(dú)立.
(Ⅰ)求得一等獎(jiǎng)的概率;
(Ⅱ)求得資金的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓錐的側(cè)面積是底面積的3倍,則其母線與底面半徑之比為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案