【題目】《中國詩詞大會》節(jié)目組決定把《將進酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩詞排在后六場,并要求《將進酒》與《望岳》相鄰,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場開場詩詞的排法有_____________種.(用數(shù)字作答)

【答案】36

【解析】

根據(jù)題意,分2步分析:將《將進酒》與《望岳》捆綁在一起和另外確定的兩首詩詞進行全排列,再將《山居秋暝》與《送杜少府之任蜀州》插排在3個空里(最后一個空不排),由分步計數(shù)原理計算可得答案.

根據(jù)題意,分2步分析:

將《將進酒》與《望岳》捆綁在一起和另外確定的兩首詩詞進行全排列,共有種排法,

再將《山居秋暝》與《送杜少府之任蜀州》插排在3個空里(最后一個空不排),有種排法,

則后六場的排法有=36(種),

故答案為:36.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若有三個極值點,求的取值范圍;

(2)若對任意都恒成立的的最大值為,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓M:: (a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(1)求橢圓方程;
(2)當直線l的傾斜角為45°時,求線段CD的長;
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為2,則輸入的正整數(shù)a的可能取值的集合是(

A.{1,2,3,4,5}
B.{1,2,3,4,5,6}
C.{2,3,4,5}
D.{2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點,且點A到拋物線M焦點F的距離為a,若拋物線M上一動點到其準線與到點C的距離之和的最小值為2a,O為坐標原點,則直線OA被圓C所截得的弦長為( )
A.2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知傾斜角為的直線經(jīng)過點.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程;

(2)若直線與曲線有兩個不同的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,DOAB是邊長為2的正三角形,當一條垂直于底邊OA(垂足不與O,A重合)的直線x=t從左至右移動時,直線l把三角形分成兩部分,記直線l左邊部分的面積y

)寫出函數(shù)y= ft)的解析式;

)寫出函數(shù)y= ft)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)滿足如下四個條件:

定義域為;

;

③當時,;

④對任意滿足.

根據(jù)上述條件,求解下列問題:

的值.

應(yīng)用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性.

求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點列{An}、{Bn}分別在銳角兩邊(不在銳角頂點),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q(mào)表示點P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則(

A.{dn}是等差數(shù)列
B.{Sn}是等差數(shù)列
C.{d }是等差數(shù)列
D.{S }是等差數(shù)列

查看答案和解析>>

同步練習冊答案