函數(shù)y=2+loga(x-1)(a>0,a≠1)的圖象必過定點P,P點的坐標為
 
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)y=logax恒過定點(1,0)的知識,求出P點的坐標.
解答: 解:∵函數(shù)y=2+loga(x-1)(a>0,a≠1),
當x-1=1,即x=2時,y=2+0=2;
∴函數(shù)y的圖象必過定點P(2,2).
故答案為:(2,2).
點評:本題考查了對數(shù)函數(shù)的圖象與性質(zhì)的問題,解題時應(yīng)利用對數(shù)函數(shù)恒過定點(1,0)的知識,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ln(x+1),g(x)=
1
2
ax2+bx

(1)若a=0,b=1時,求證:f(x)-g(x)≤0對于x∈(-1,+∞)恒成立;
(2)若b=2,且h(x)=f(x-1)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)利用(1)的結(jié)論證明:若0<x<y,則xlnx+ylny>(x+y)ln
x+y
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,側(cè)視圖是一個等邊三角形,俯視圖是半圓和正方形,則這個幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,函數(shù)f(x)=|x+a|+|x-b|的最小值為2,則a2+b2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①小于90°的角是第象Ⅰ限角;
②將y=3sin(x+
π
5
)的圖象上所有點向左平移
5
個單位長度可得到y(tǒng)=3sin(x-
π
5
)的圖象;
③若α、β是第Ⅰ象限角,且α>β,則sinα>sinβ;
④若α為第Ⅱ象限角,則
α
2
是第Ⅰ或第Ⅲ象限的角;
⑤函數(shù)y=tanx在整個定義域內(nèi)是增函數(shù)
其中正確的命題的序號是
 
.(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(1-x25的展開式中x6的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班級有3名學生被復(fù)旦大學自主招生錄取后,大學提供了3個專業(yè)由這3名學生選擇,每名學生只能選擇一個專業(yè),假設(shè)每名學生選擇每個專業(yè)都是等可能的,則這3個專業(yè)中恰有一個專業(yè)沒有學生選擇的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(x-
1
x
15的展開式中系數(shù)最大的項是第
 
項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題
①已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2
②已知命題p:?x0∈R,tanx0=1;命題q:?x∈R,x2-x+1>0.則命題“p∧¬q”是假命題
③設(shè)回歸直線方程為
y
=2.5-2x,當變量x增加1個單位時,y平均增加2個單位
π
0
sinxdx值等于2
其中正確的命題是
 

查看答案和解析>>

同步練習冊答案