【題目】在平面直角坐標(biāo)系中,橢圓的四個頂點圍成的四邊形面積為,圓經(jīng)過橢圓的短軸端點.
求橢圓的方程;
過橢圓的右焦點作互相垂直的兩條直線分別與橢圓相交于,和,四點,求四邊形面積的最小值.
【答案】;.
【解析】
根據(jù)題意求出,因為圓經(jīng)過橢圓的兩個短軸端點,則,所以,列出橢圓的方程;
對直線的斜率情況討論,當(dāng)斜率不存在或為時,四邊形,當(dāng)直線的斜率存在時,,,利用二次函數(shù)的性質(zhì)求出四邊形面積的最小值.
解:根據(jù)題意,四個頂點圍成的四邊形為菱形,其面積為,,
因為圓經(jīng)過橢圓的兩個短軸端點,則,
所以,,
故橢圓的方程為.
當(dāng)直線的斜率存在且不為零時,設(shè)直線的方程為,
由消去得,
,.
同理得,.
令,則.
當(dāng)直線的斜率不存在時,,
當(dāng)直線的斜率為零時,,,
.
,四邊形面積的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,M為上的一點,以為折痕把折起,使點D到達(dá)點P的位置,且平面平面.連接,,點N為的中點,且平面.
(1)求線段的長;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的前項中的最大項為,最小項為,設(shè).
(1)若,求數(shù)列的通項公式;
(2)若,求數(shù)列的前項和;
(3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.一研究團(tuán)隊統(tǒng)計了某地區(qū)100名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計 | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計 | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點在圓上,直線交橢圓于,兩點.
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點),求的值;
(3)設(shè)點關(guān)于軸對稱點為(與點不重合),且直線與軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線:與曲線:交于,兩點,且的周長為.
(Ⅰ)求曲線的方程.
(Ⅱ)設(shè)過曲線焦點的直線與曲線交于,兩點,記直線,的斜率分別為,.求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點為,直線與拋物線交于,兩點.
(1)若過點,證明:;
(2)若,點在曲線上,,的中點均在拋物線上,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓交于兩點,且(其中為坐標(biāo)原點),若橢圓的離心率滿足,則橢圓長軸的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com