考察下列三個命題,在“橫線”處都缺少一個條件,補上這個條件使其構(gòu)成真命題(其中l(wèi)?m為直線,α?β為平面),則此條件為
 

考點:直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:根據(jù)線面平行的判定定理,我們知道要判斷線面平行需要三個條件:面內(nèi)一線,面外一線,線線平行,分析已知中的三個命題,即可得到答案.
解答: 解:①體現(xiàn)的是線面平行的判定定理,
缺的條件是“l(fā)為平面α外的直線”,
即“l(fā)?α”.
它同樣適合②③,
故填l?α.
故答案為:l?α.
點評:本題考查的知識點是直線與平面平行的判定,熟練掌握直線與平面平行判斷的方法及必要的條件是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,線段AB夾在一個直二面角的兩個半平面內(nèi),它與兩個半平面所成角都是30°,則AB與這個二面角的棱l所成角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式|x-m|<1成立的一個充分非必要條件是
1
3
<x<
1
2
,則實數(shù)m的取值范圍是(  )
A、[-
4
3
1
2
]
B、[-
1
2
,
4
3
]
C、(-∞,-
1
2
)
D、[
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,DE∥BC,BE∥DF,若BC=4.DE=3,EF=1,則EC的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于給定的正整數(shù)n,則由直線y=n2與拋物線y=x2所圍成的封閉區(qū)域內(nèi)(包括邊界)的整點個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F作直線與拋物線交于A、B兩點,以AB為直徑作圓,判斷所作圓與拋物線的關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)△ABC及一點O滿足
AO
AB
=
BO
BA
,
BO
BC
=
CO
CB
,則點O是△ABC的( 。
A、重心B、垂心C、內(nèi)心D、外心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-6ax2+b,是否存在實數(shù)a,b,使f(x)在[-1,2]上取得最大值3,最小值-29?若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的不等式(1-a2)x2-2(a-1)x-1<0的解集為R,求a的取值范圍.

查看答案和解析>>

同步練習冊答案