已知數(shù)列{an}滿(mǎn)足:a1=1,a2=2,且an+2=(2+cosnπ)(an-1)+3,n∈N*
(1)求通項(xiàng)公式an
(2)求數(shù)列的前n項(xiàng)的和Sn
考點(diǎn):數(shù)列的求和
專(zhuān)題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)討論n的奇偶性,即可求通項(xiàng)公式an;
(2)根據(jù)等差數(shù)列和等比數(shù)列的前n項(xiàng)和公式,即可求數(shù)列的前n項(xiàng)的和Sn
解答: 解:(1)當(dāng)n是奇數(shù)時(shí),cosnπ=-1,
所以an+2=an+2,所以a1,a3,a5,…,a2n-1,…是首項(xiàng)為a1=1,公差為2的等差數(shù)列,因此a2n-1=2n-1.
當(dāng)n為偶數(shù)時(shí),cosnπ=1,所以an+2=3an,所以a2,a4,a6,…,a2n,…是首項(xiàng)為a2=2,公比為3的等比數(shù)列,因此a2n=2×3n-1
綜上an=
n, n是奇
3
n
2
-1
,n是偶

(2)由(1)得S2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)=3n+n2-1
S2n-1=S2n-a2n=3n-1+n2-1,
所以Sn=
3
n
2
+
n2
4
-1,n是偶
3
n-1
2
+
(n+1)2
4
-1,n是奇
點(diǎn)評(píng):本題主要考查數(shù)列的通項(xiàng)公式的求解以及數(shù)列求和的計(jì)算,考查學(xué)生的運(yùn)算能力,本題注意要注意對(duì)n進(jìn)行分類(lèi)討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)正方體紙展開(kāi)圖,如果將它還原成正方體,那么直線AB,CD,EF在原正方體的位置關(guān)系是(  )
A、AB∥CD,EF⊥CD
B、AB與CD異面成角60°,CD與EF相交成角60°
C、AB∥CD,CD與EF相交成角60°
D、EF⊥CD,AB與CD異面成角60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lg
1+sinx
cosx
的圖象(  )
A、關(guān)于x軸對(duì)稱(chēng)
B、關(guān)于y軸對(duì)稱(chēng)
C、關(guān)于原點(diǎn)對(duì)稱(chēng)
D、關(guān)于直線y=x對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右準(zhǔn)線為直線l,動(dòng)直線y=kx+m(k<0,m>0)交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為M,射線OM分別交橢圓及直線l于P,Q兩點(diǎn),如圖.若A,B兩點(diǎn)分別是橢圓E的右頂點(diǎn),上頂點(diǎn)時(shí),點(diǎn)Q的縱坐標(biāo)為
1
e
(其中e為橢圓的離心率),且OQ=
5
OM.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)如果OP是OM,OQ的等比中項(xiàng),那么
m
k
是否為常數(shù)?若是,求出該常數(shù);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n-5an-85,n∈N*
(1)證明:{an-1}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,-3),
b
=(-1,2),
c
=(2,8)
(Ⅰ)若
c
=x
a
+y
b
,求x,y的值;
(Ⅱ)若
d
=3
a
+5
b
,求向量
a
與向量
d
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線與橢圓
x2
9
+
y2
25
=1有公共焦點(diǎn)F1,F(xiàn)2,它們的離心率之和為2
4
5

(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)P是雙曲線與橢圓的一個(gè)交點(diǎn),求cos∠F1PF2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x0,y0)是橢圓
x2
8
+
y2
4
=1上一點(diǎn),A點(diǎn)的坐標(biāo)為(6,0),求線段PA中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若過(guò)橢圓
x2
12
+
y2
3
=1內(nèi)一點(diǎn)(2,1)的弦被該點(diǎn)平分,求該弦所在直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案