【題目】在四棱錐中,底面是邊長(zhǎng)為4的菱形,,,平面.
(1)證明:;
(2)若是的中點(diǎn),,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)底面為菱形,以及平面,可證得面,從而證明;
(2)方法一:利用線面垂直,作出二面角的平面角.在直角三角形中,逐步求出邊長(zhǎng),最終求出線面角.
方法二:根據(jù)建立的空間直角坐標(biāo)系,寫出點(diǎn)的坐標(biāo)后,代入公式計(jì)算即可.
(1)因?yàn)榈酌媸橇庑,所?/span>.
又平面,平面,所以.
,所以面.
又面,所以.
(2)由(1)
在中,,∴,,
方法一:
過(guò)做于,連,則,
所以是二面角的平面角.
在中,,,
所以,即.
所以.
,
得,
,,
所以二面角的余弦值為.
方法二:
如圖,以,,所在直線為,,軸,建立空間直角坐標(biāo)系,
,,,,
,,.
設(shè)面的法向量為,
則,即,
即,得方程的一組解為,,,
即.
又面的一個(gè)法向量為,
所以,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義兩個(gè)函數(shù)的關(guān)系:函數(shù)的定義域分別為,若對(duì)任意的,總存在,使得,我們就稱函數(shù)為的“子函數(shù)”.已知函數(shù),,.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若為的一個(gè)“子函數(shù)”,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“水資源與永恒發(fā)展”是2015年聯(lián)合國(guó)世界水資源日主題,近年來(lái),某企業(yè)每年需要向自來(lái)水廠所繳納水費(fèi)約4萬(wàn)元,為了緩解供水壓力,決定安裝一個(gè)可使用4年的自動(dòng)污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(fèi)(單位:萬(wàn)元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為0.2.為了保證正常用水,安裝后采用凈水裝置凈水和自來(lái)水廠供水互補(bǔ)的用水模式.假設(shè)在此模式下,安裝后該企業(yè)每年向自來(lái)水廠繳納的水費(fèi)C(單位:萬(wàn)元)與安裝的這種凈水設(shè)備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是C(x)= (x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設(shè)備的費(fèi)用與該企業(yè)4年共將消耗的水費(fèi)之和.
(1)試解釋C(0)的實(shí)際意義,并建立y關(guān)于x的函數(shù)關(guān)系式并化簡(jiǎn);
(2)當(dāng)x為多少平方米時(shí),y取得最小值,最小值是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,直線:與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.為左頂點(diǎn),過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),直線,分別交直線于,兩點(diǎn).
(1)求橢圓的方程;
(2)以線段為直徑的圓是否過(guò)定點(diǎn)?若是,寫出所有定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線:,:,圓:.
(1)當(dāng)為何值時(shí),直線與平行;
(2)當(dāng)直線與圓相交于,兩點(diǎn),且時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
求函數(shù)在處的切線方程;
若在,處導(dǎo)數(shù)相等,證明:.
若對(duì)于任意,直線與函數(shù)圖象都有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).
(1)若,證明在區(qū)間上沒有零點(diǎn);
(2)在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為多面體,平面與平面垂直,點(diǎn)在線段上, 都是正三角形.
(1)證明:直線∥面;
(2)在線段上是否存在一點(diǎn),使得二面角的余弦值是,若不存在請(qǐng)說(shuō)明理由,若存在請(qǐng)求出點(diǎn)所在的位置。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計(jì)資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、商貿(mào)、公司和自主創(chuàng)業(yè)等六大行業(yè).2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)和金融工程等三個(gè)本科專業(yè),畢業(yè)生人數(shù)分別是70人,140人和210人.現(xiàn)采用分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.
(1)應(yīng)從該學(xué)院三個(gè)專業(yè)的畢業(yè)生中分別抽取多少人?
(2)國(guó)家鼓勵(lì)大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,含有“自主創(chuàng)業(yè)”就業(yè)意向的有6人,且就業(yè)意向至少有三個(gè)行業(yè)的學(xué)生有7人.為方便統(tǒng)計(jì),將至少有三個(gè)行業(yè)就業(yè)意向的這7名學(xué)生分別記為,,,,,,,統(tǒng)計(jì)如下表:
學(xué)生 就業(yè)意向 | |||||||
公務(wù)員 | × | 〇 | × | 〇 | 〇 | × | × |
教師 | × | 〇 | × | 〇 | 〇 | 〇 | 〇 |
金融 | × | × | 〇 | 〇 | 〇 | × | × |
商貿(mào) | 〇 | 〇 | 〇 | × | 〇 | 〇 | 〇 |
公司 | 〇 | 〇 | × | 〇 | 〇 | × | 〇 |
自主創(chuàng)業(yè) | 〇 | × | 〇 | × | × | 〇 | 〇 |
其中“〇”表示有該行業(yè)就業(yè)意向,“×”表示無(wú)該行業(yè)就業(yè)意向.
①試估計(jì)該學(xué)院2020屆畢業(yè)生中有自主創(chuàng)業(yè)意向的學(xué)生人數(shù);
②現(xiàn)從,,,,,,這7人中隨機(jī)抽取2人接受采訪,設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com