數(shù)列{an}滿足an+an+1=
1
2
(n∈N*),a2=1,Sn是數(shù)列{an}的前n項(xiàng)和,則S21為(  )
A、
9
2
B、
11
2
C、6
D、10
分析:由an+an+1=
1
2
(n∈N*),a2=1,結(jié)合數(shù)列的性質(zhì),令n=1,2,3,分別求出a1,a2,a3,a4,從而得到數(shù)列{an}為周期數(shù)列,2為一個周期.由此可求出S21的值.
解答:解:當(dāng)n=1時(shí),a1+a2=
1
2
,
a1=
1
2
-1=-
1
2
;
當(dāng)n=2時(shí),a2+a3=
1
2
,
a3=
1
2
-1=-
1
2
;
當(dāng)n=3時(shí),a3+a4=
1
2
,
a4=
1
2
-(-
1
2
)=1

∴數(shù)列{an}為周期數(shù)列,2為一個周期.
S21=
9
2

故選A.
點(diǎn)評:本題考查數(shù)列的性質(zhì)和遞推公式,解題時(shí)要注意分析,仔細(xì)觀察,認(rèn)真總結(jié),尋找規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)數(shù)列{an}滿足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差數(shù)列,求其通項(xiàng)公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镽,數(shù)列{an}滿足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數(shù),n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn,對于給定的正整數(shù)m,如果
S(m+1)nSmn
的值與n無關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an} 滿足
an+12an2
=p
(p為正常數(shù),n∈N*),則稱{an} 為“等方比數(shù)列”.則“數(shù)列{an} 是等方比數(shù)列”是“數(shù)列{an} 是等比數(shù)列”的
必要非充分
必要非充分
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)數(shù)列{an}滿足an+1=
4an-2
an+1
(n∈N*).
①存在a1可以生成的數(shù)列{an}是常數(shù)數(shù)列;
②“數(shù)列{an}中存在某一項(xiàng)ak=
49
65
”是“數(shù)列{an}為有窮數(shù)列”的充要條件;
③若{an}為單調(diào)遞增數(shù)列,則a1的取值范圍是(-∞,-1)∪(1,2);
④只要a1
3k-2k+1
3k-2k
,其中k∈N*,則
lim
n→∞
an
一定存在;
其中正確命題的序號為
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)已知各項(xiàng)均為正整數(shù)的數(shù)列{an}滿足an<an+1,且存在正整數(shù)k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)當(dāng)k=3,a1a2a3=6時(shí),求數(shù)列{an}的前36項(xiàng)的和S36;
(2)求數(shù)列{an}的通項(xiàng)an
(3)若數(shù)列{bn}滿足bnbn+1=-21•(
12
)an-8
,且b1=192,其前n項(xiàng)積為Tn,試問n為何值時(shí),Tn取得最大值?

查看答案和解析>>

同步練習(xí)冊答案